
MIDI
This information is gleaned from various text files in the public domain.

Source documents:
The USENET MIDI Primer
MIDI File Format 1.1
M Garvin

Channel usage
Standard patch assignments
Standard key assignments

Compiled and adapted by: Neil Rowland, Jr.

Channel usage for Windows
Windows docs numbers channels 1-16, but everywhere else it's 0-15, particularly in the MIDI
file format. I'll stick to the zero-based numbering.

Channels 0 thru 8: extended melodic tracks, 16 notes polyphony. Not all synths support
these.

Channel 9: extended percussion track, 16 "notes" polyphony. Not all synths support these.

Channels 10 and 11: unused.

Channels 12 thru 14: base-level melodic tracks, 6 notes polyphony.

Channel 15: base-level percussion track, 3 "notes" polyphony.

See:
DATA FORMAT
VOICE MESSAGES

Standard patch assignments for Windows
Patch numbers are divided by category into 16 groups of 8 values each...

0 - 7 Piano
8 - 15 Chromatic Percussion
16 - 23Organ
24 - 31Guitar
32 - 39Bass
40 - 47Strings
48 - 55Ensemble
56 - 63Brass
64 - 71Reed
72 - 79Pipe
80 - 87Synth Lead
88 - 95Synth Pad
96 - 103 Synth Effects
104-111 Ethnic
112-119 Percussive
120-127 Sound Effects

Standard key assignments for Windows
For notes, middle C = 60.
A below middle C = 57.

For percussion:
35 acoustic bass drum
36 bass drum 1
36 side stick
38 acoustic snare
39 hand clap
40 electric snare
41 low floor tom
42 closed high hat
43 high floor tom
44 pedal high hat
45 low tom
46 open high hat
47 low-mid tom
48 high-mid tom
49 crash cymbal 1
50 high tom
51 ride cymbal 1
52 chines cymbal
53 ride bell
54 tambourine
55 splash cymbal
56 cowbell
57 crash cymbal 2
58 vibraslap
59 ride cymbal 2
60 high bongo
61 low bongo
62 mute high conga
63 open high conga
64 low conga
65 high tymbale
66 low timbale
67 high apogo
68 low apogo
69 cabasa
70 maracas
71 short whistle
72 long whistle
73 short guiro
74 long guiro
75 claves
76 high wood block
77 low wood block
78 mute cuica
79 open cuica
80 mute triangle
81 open triangle

See:

VOICE MESSAGES

Standard MIDI-File Format Spec. 1.1
Distributed by:
The International MIDI Association
5316 W. 57th St.
Los Angeles, CA    90056
(213) 649-6434

0 - Introduction

The document outlines the specification for MIDI Files. The purpose of MIDI Files    is to
provide a way of interchanging time-stamped MIDI data    between different    programs on
the same or different computers. One of the    primary design goals is compact
representation, which makes it very appropriate for disk-based    file format, but which might
make it inappropriate for    storing in    memory    for    quick access by a sequencer program.   
(It    can    be    easily converted to a quickly-accessible format on the fly as files are read in or
written    out.) It is not intended to replace the normal file format of    any program, though it
could be used for this purpose if desired.

MIDI Files contain one or more MIDI streams, with time information for each event.    Song,   
sequence,    and track structures, tempo    and    time    signature information,      are    all   
supported.    Track    names    and    other      descriptive information may be stored with the
MIDI data. This format supports multiple tracks    and    multiple    sequences so that if the
user    of    a    program    which supports multiple tracks intends to move a file to another one,
this format can allow that to happen.

This    spec defines the 8-bit binary data stream used in the file. The    data can    be stored in
a binary file, nibbilized, 7-bit-ized for efficient    MIDI transmission,    converted    to    Hex
ASCII, or translated    symbolically    to    a printable    text    file. This spec addresses what's in
the 8-bit    stream.    It does    not address how a MIDI File will be transmitted over MIDI. It is   
the general    feeling    that a MIDI transmission protocol will be    developed    for files in
general and MIDI Files will use this scheme.

1 - Sequences, Tracks, Chunks: File Block Structure
2 - Chunk Descriptions

HEADER CHUNKS
FORMATS 0, 1, AND 2
TRACK CHUNKS

3 - Meta-Events
4 - Program Fragments and Example MIDI Files

1 - Sequences, Tracks, Chunks: File Block Structure
CONVENTIONS
In this document, bit 0 means the least significant bit of a byte, and    bit 7 is the most
significant.

Some numbers in MIDI Files are represented is a form called VARIABLE-LENGTH
QUANTITY.    These numbers are represented 7 bits per byte, most    significant bits first. All
bytes except the last have bit 7 set, and the last byte has bit    7    clear. If the number is
between 0 and 127, it is    thus    represented exactly as one byte.

Here are some examples of numbers represented as variable-length quantities:

 00000000 00
 00000040 40
 0000007F 7F
 00000080 81 00
 00002000 C0 00
 00003FFF FF 7F
 00004000 81 80 00
 00100000 C0 80 00
 001FFFFF FF FF 7F
 00200000 81 80 80 00
 08000000 C0 80 80 00
 0FFFFFFF FF FF FF 7F

The largest number which is allowed is 0FFFFFFF so that the variable-length representations 
must fit in 32 bits in a routine to write    variable-length numbers. Theoretically, larger
numbers are possible, but 2 x 10^8 96ths    of a    beat at a fast tempo of 500 beats per
minute is four days,    long    enough for any delta-time!

FILES
To    any file system, a MIDI File is simply a series of 8-bit bytes. On the Macintosh, this byte
stream is stored in the data fork of a file (with file type    'MIDI'),    or on the Clipboard (with
data type    'MIDI').    Most    other computers    store    8-bit byte streams in    files    --    naming 
or storage conventions for those computers will be defined as required.

CHUNKS
MIDI Files are made up of -chunks-. Each chunk has a 4-character type and a32-bit
length, which is the number of bytes in the chunk.    This    structure allows future chunk
types to be designed which may be easily be ignored    if encountered by a program written
before the chunk type is introduced.    Your programs    should    EXPECT    alien chunks and
treat them as    if    they    weren't there.

Each chunk begins with a 4-character ASCII type. It is followed by a 32-bit length, most
significant byte first (a length of 6 is stored as 00    00    00 06).    This length refers to the
number of bytes of data which    follow:    the eight bytes of type and length are not included.
Therefore, a chunk with    a length of 6 would actually occupy 14 bytes in the disk file.

This    chunk    architecture is similar to that used by Electronic    Arts'    IFF format,    and    the
chunks described herin could easily be placed in    an    IFF file.    The    MIDI    File itself is not
an IFF file:    it    contains    no    nested chunks, and chunks are not constrained to be an even
number of bytes    long. Converting    it to an IFF file is as easy as padding odd length chunks, 
and sticking the whole thing inside a FORM chunk.

MIDI    Files contain two types of chunks: header chunks and track chunks.    A -header-   
chunk provides a minimal amount of information pertaining to    the entire MIDI file. A -track-
chunk contains a sequential stream of MIDI data which    may contain information for up to
16 MIDI channels. The concepts    of multiple tracks, multiple MIDI outputs, patterns,
sequences, and songs    may all be implemented using several track chunks.

A MIDI File always starts with a header chunk, and is followed by one or more track
chunks.

                    MThd <length of header data>
                    <header data>
                    MTrk <length of track data>
                    <track data>
                    MTrk <length of track data>
                    <track data>
                    . . .

HEADER CHUNKS
The    header    chunk    at    the beginning of    the    file    specifies    some    basic information   
about the data in the file. Here's the syntax of the    complete chunk:

<Header Chunk> = <chunk type><length><format><ntrks><division>

As    described    above,    <chunk type> is the four    ASCII    characters    'MThd'; <length> is a
32-bit representation of the number 6 (high byte first).

The data section contains three 16-bit words, stored most-significant byte first.

The    first word, <format>, specifies the overall organization of the    file. Only three values
of <format> are specified:

0-the file contains a single multi-channel track
1-the file contains one or more simultanious tracks (or MIDI outputs) of a sequence
2-the    file    contains    one or more    sequentially    independant    single-track patterns

More information about these formats is provided below.
(FORMATS 0, 1, AND 2)

The next word, <ntrks>, is the number of track chunks in the file. It    will always be 1 for a
format 0 file.

The    third word, <division>, specifies the meaning of the    delta-times.    It has two
formats, one for metrical time, and one for time-code-based time:

 +---+---+
 | 0 | ticks per quarter-note |
 ==|
 | 1 | negative SMPTE format | ticks per frame |
 +---+-----------------------+-----------------+
 |15 |14 8 |7 0 |

If bit 15 of <division> is zero, the bits 14 thru 0 represent the number of delta time "ticks"
which make up a quarter-note. For instance, if    division is    96,    then a time interval of an
eighth-note between two events    in    the file would be 48.

If    bit    15    of <division> is a one, delta times in a    file    correspond    to subdivisions    of    a
second, in a way consistent with SMPTE and    MIDI    Time Code. Bits 14 thru 8 contain one
of the four values -24, -25, -29, or    -30, corresponding    to the four standard SMPTE and
MIDI Time Code    formats    (-29 corresponds    to    30 drop frome), and represents the
number    of    frames    per second.    These    negative numbers are stored in two's
compliment    form.    The second    byte    (stored positive) is the resolution within a    frame:   
typical values may be 4 (MIDI Time Code resolution), 8, 10, 80 (bit resolution), or 100. This
stream allows exact specifications of time-code-based tracks, but also    allows    milisecond-
based    tracks by specifying    25|frames/sec    and    a resolution of 40 units per frame. If the
events in a file are stored with a bit resolution of thirty-framel time code, the division word
would be    E250 hex.

FORMATS 0, 1, AND 2
A    Format 0 file has a header chunk followed by one track chunk. It is    the most
interchangable representation of data. It is very useful for a    simple single-track    player    in
a program which needs to    make    synthesizers    make sounds,    but    which    is primarily
concerened with something    else    such    as mixers    or sound effect boxes. It is very
desirable to be able    to    produce such    a format, even if your program is track-based, in
order to work    with these    simple    programs. On the other hand, perhaps someone    will   
write    a format    conversion from format 1 to format 0 which might be so easy to    use in
some setting that it would save you the trouble of putting it into    your program.

A    Format    1    or 2 file has a header chunk followed by one    or    more    track chunks.   
programs which support several simultanious tracks should be    able to save and read data
in format 1, a vertically one-dementional form,    that is,    as a collection of tracks. Programs
which support several    independant patterns    should be able to save and read data in
format 2, a    horizontally one-dementional    form.    Providing these minimum    capabilities   
will    ensure maximum interchangability.

In    a MIDI system with a computer and a SMPTE synchronizer which uses    Song Pointer   
and Timing Clock, tempo maps (which describe the tempo    throughout the track, and may
also include time signature information, so that the bar number    may be derived) are
generally created on the computer. To use    them with the synchronizer, it is necessary to
transfer them from the    computer. To make it easy for the synchronizer to extract this data
from a MIDI File, tempo    information should always be stored in the first MTrk chunk.    For   
a format 0 file, the tempo will be scattered through the track and the    tempo map    reader
should ignore the intervening events; for a format 1 file,    the tempo    map must be stored
as the first track. It is polite to a    tempo    map reader    to offerr your user the ability to
make a format 0 file    with    just the tempo, unless you can use format 1.

All MIDI Files should specify tempo and time signature. If they don't, the time
signature is assumed to be 4/4, and the tempo 120 beats per minute. In format    0, these
meta-events should occur at least at the beginning of    the single    multi-channel    track.   
In format 1,    these    meta-events    should    be contained    i|    the    first    track.    In format   
2,    each    of    the    temporally independant    patterns    should contain at least initial time   
signature    and tempo information.

We    may    decide to define other format IDs to support other    structures.    A program
encountering an unknown format ID may still read other MTrk chunks it    finds    from the
file, as format 1 or 2, if its user can make    sense    of them and arrange them into some
other structure if appropriate. Also,    more parameters may be added to the MThd chunk in
the future: it is important to read and honor the length, even if it is longer than 6.

TRACK CHUNKS
The    track    chunks (type MTrk) are where actual song data is    stored.    Each track    chunk   
is    simply a stream of MIDI    events    (and    non-MIDI    events), preceded    by    delta-time   
values. The format for    Track    Chunks    (described below) is exactly the same for all three
formats (0, 1, and 2: see    "Header Chunk" above) of MIDI Files.

Here    is the syntax of an MTrk chunk (the + means "one or more":    at    least one MTrk event
must be present):

<Track Chunk> = <chunk type><length><MTrk event>+

The syntax of an MTrk event is very simple:

<MTrk event> = <delta-time><event>

<delta-time> is stored as a variable-length quantity. It    represents    the amount    of
time before the following event. If the first event in    a    track occurs    at    the    very   
beginning    of    a    track,    or    if    two    events    occur simultaineously,    a    delta-time    of
zero is used.    Delta-times    are    always present. (Not storing delta-times of 0 requires at
least two bytes for    any other    value,    and    most delta-times aren't zero.) Delta-time    is   
in    some fraction    of a beat (or a second, for recording a track with SMPTE times), as
specified in the header chunk.

<event> = <MIDI event> | <sysex event> | <meta-event>

<MIDI    event> is any MIDI channel message. Running status is    used:    status bytes    of
MIDI channel messages may be omitted if the preceding event is    a MIDI    channel   
message with the same status. The first event in    each    MTrk chunk    must specify status.
Delta-time is not considered an event    itself: it is an integral part of the syntax for an MTrk
event. Notice that running status occurs across delta-times.

<sysex event> is used to specify a MIDI system exclusive message, either as one unit or in
packets, or as an "escape" to specify any arbitrary bytes to be    transmitted. A normal
complete system exclusive message is stored in    a MIDI File in this way:

                    F0 <length> <bytes to be transmitted after F0>

The length is stored as a variable-length quantity. It specifies the number of    bytes which
follow it, not including the F0 or the length    itself.    For instance,    the transmitted message
F0 43 12 00 07 F7 would be stored    in    a MIDI File as F0 05 43 12 00 07 F7. It is required to
include the F7 at    the end    so that the reader of the MIDI File knows that it has read the   
entire message.

Another    form    of sysex event is provided which does not imply that    an    F0 should    be
transmitted. This may be used as an "escape" to provide for    the transmission of things
which would not otherwise be legal, including system realtime    messages, song pointer or
select, MIDI Time Code, etc. This    uses the F7 code:

                    F7 <length> <all bytes to be transmitted>

Unfortunately,    some    synthesizer manufacturers specify that    their    system exclusive
messages are to be transmitted as little packets. Each packet    is only part of an entire
syntactical system exclusive message, but the    times they are transmitted are important.
Examples of this are the bytes sent    in a CZ patch dump, or the FB-01's "system exclusive

mode" in which microtonal data can be transmitted. The F0 and F7 sysex events may be
used together to break    up    syntactically    complete system    exclusive    messages    into   
timed packets.

An    F0    sysex    event is used for the first packet in a series --    it    is    a message    in which
the F0 should be transmitted. An F7 sysex event    is    used for    the remainder of the
packets, which do not begin with F0. (Of    course, the F7 is not considered part of the system
exclusive message).

A    syntactic system exclusive message must always end with an F7,    even    if the real-life
device didn't send one, so that you know when you've    reached the end of an entire sysex
message without looking ahead to the next    event in the MIDI File. If it's stored in one
compllete F0 sysex event, the    last byte must be an F7. There also must not be any
transmittable MIDI events in between    the    packets    of a multi-packet    system    exclusive   
message.    This principle is illustrated in the paragraph below.

Here is a MIDI File of a multi-packet system exclusive message: suppose the bytes    F0 43 12
00 were to be sent, followed by a 200-tick delay,    followed by    the bytes 43 12 00 43 12 00,
followed by a 100-tick delay, followed    by the bytes 43 12 00 F7, this would be in the MIDI
File:

 F0 03 43 12 00
 81 48 200-tick delta time
 F7 06 43 12 00 43 12 00
 64 100-tick delta time
 F7 04 43 12 00 F7

When    reading a MIDI File, and an F7 sysex event is encountered    without    a preceding    F0
sysex event to start a multi-packet system exclusive    message sequence,    it    should    be
presumed that the F7 event is being    used    as    an "escape". In this case, it is not
necessary that it end with an F7,    unless it is desired that the F7 be transmitted.

<meta-event> specifies    non-MIDI information useful to this format    or    to sequencers,
with this syntax:

                    FF <type> <length> <bytes>

All    meta-events    begin    with FF, then have an event type    byte    (which    is always    less   
than 128), and then have the length of the data stored    as    a variable-length    quantity, and
then the data itself. If there is    no    data, the    length is 0. As with chunks, future meta-
events may be designed    which may    not    be known to existing programs, so programs
must    properly    ignore meta-events    which they do not recognize, and indeed should
expect    to    see them.    Programs must never ignore the length of a meta-event which they   
do not    recognize,    and    they    shouldn't be    surprized    if    it's    bigger    than expected.    If 
so, they must ignore everything past what they    know    about. However,    they must not
add anything of their own to the end of    the    meta-event.

Sysex events and meta events cancel any running status which was in effect. Running
status does not apply to and may not be used for these messages.

See also:
McQueer on messages

3 - Meta-Events
A few meta-events are defined herin. It is not required for every    program to support every
meta-event.

In the syntax descriptions for each of the meta-events a set of conventions is    used    to
describe parameters of the events. The FF    which    begins    each event, the type of each
event, and the lengths of events which do not    have a    variable    amount of data are given
directly in hexadecimal.    A    notation such    as dd or se, which consists of two lower-case   
letters,    mnemonically represents    an 8-bit value. Four identical lower-case letters such as   
wwww mnemonically    refer to a 16-bit value, stored most-significant-byte    first. Six   
identical lower-case letters such as tttttt refer to a    24-bit    value, stored    most-significant-
byte first. The notation len refers to    the    length portion of the meta-event syntax, that is, a
number, stored as a    variable- length    quantity, which specifies how many bytes (possibly
text) data    were just specified by the length.

In    general, meta-events in a track which occur at the same time may    occur in any order. If
a copyright event is used, it should be placed as early as possible    in    the file, so it will be
noticed easily. Sequence    Number    and Sequence/Track    Name events, if present, must
appear at time 0. An    end-of- track event must occur as the last event in the track.

Meta-events initially defined include:

FF 00 02 Sequence Number
This    optional    event, which must occur at the beginning    of    a    track, before    any   
nonzero    delta-times, and before    any    transmittable    MIDI events, specifies the number of
a sequence. In a format 2 MIDI File, it is used to identify each "pattern" so that a "song"
sequence using    the Cue    message to refer to the patterns. If the ID numbers    are   
omitted, the sequences' lacations in order in the file are used as defaults.    In a format 0 or 1
MIDI File, which only contain one sequence, this number should    be    contained    in the first
(or only)    track.    If    transfer    of several multitrack sequences is required, this must be
done as a    group of format 1 files, each with a different sequence number.

Meta-event    types 01 through 0F are reserved for various types of text events,    each of
which meets the specification of text events but is used for a different purpose.

FF 20 01 cc MIDI Channel Prefix
The    MIDI    channel (0-15)    contained in this event    may    be    used    to associate a MIDI
channel with all events which follow, including System exclusive    and meta-events. This
channel is "effective" until the    next normal    MIDI event (which contains a channel) or the
next MIDI    Channel Prefix meta-event. If MIDI channels refer to "tracks", this message may
into    a    format 0 file, keeping their non-MIDI data associated    with    a track. This capability
is also present in Yamaha's ESEQ file format.

FF 2F 00 End of Track
This    event is not optional. It is included so that    an    exact    ending point may be
specified for the track, so that an exect length, which is necessary for tracks which are
looped or concatenated.

FF 51 03 tttttt Set Tempo
FF 54 05 hr mn se fr ff SMPTE Offset

This    event, if present, designates the SMPTE time at which    the    track chunk    is
supposed to start. It should be present at the    beginning    of the    track,    that is, before any
nonzero delta-times,    and    before    any transmittable    MIDI    events. the hour must be
encoded    with    the    SMPTE format, just as it is in MIDI Time Code. In a format 1 file, the   
SMPTE Offset must be stored with the tempo map, and has no meaning in any    of the other
tracks. The ff field contains fractional frames, in 100ths of a    frame,    even in SMPTE-based
tracks which specify a    different    frame subdivision for delta-times.

FF 58 04 nn dd cc bb Time Signature
FF 59 02 sf mi Key Signature
 sf = -7: 7 flats
 sf = -1: 1 flat
 sf = 0: key of C
 sf = 1: 1 sharp
 sf = 7: 7 sharps

 mi = 0: major key
 mi = 1: minor key

FF 7F len data Sequencer Specific Meta-Event
Special requirements for particular sequencers may use this event type: the    first    byte or
bytes of data is a manufacturer ID (these    are    one byte,    or    if the first byte is 00, three
bytes). As with    MIDI    System Exclusive,    manufacturers    who define something using   
this    meta-event should    publish    it    so that others may be used by    a    sequencer    which
elects    to    use    this as its only file format;    sequencers    with    their established    feature-
specific    formats    should probably    stick    to    the standard features when using this
format.

Text Meta-Events
FF 01 len text                              Text Event

Any amount of text describing anything. It is a good idea to put a text event right at the
beginning of a track, with the name of the track,    a description    of its intended
orchestration, and any    other    information which the user wants to put there. Text events
may also occur at    other times in a track, to be used as lyrics, or descriptions of cue   
points. The text in this event should be printable ASCII characters for maximum interchange. 
However, other characters codes using the high-order    bit may be used for interchange of
files between different programs on    the same    computer which supports an extended
character set. Programs on    a computer    which    does not support non-ASCII    characters   
should    ignore those characters.

FF 02 len text                              Copyright Notice

Contains a copyright notice as printable ASCII text. The notice    should contain the
characters (C), the year of the copyright, and the owner of the    copyright. If several pieces
of music are in the same    MIDI    File, all of the copyright notices should be placed together
in this event so that it will be at the beginning of the file. This event should be    the first
event in the track_chunk, at time 0.

FF 03 len text                              Sequence/Track Name

If in a format 0 track, or the first track in a format 1 file, the name of the sequence.
Otherwise, the name of the track.

FF 04 len text                              Instrument Name

A description of the type of instrumentation to be used in that    track. May    be    used    with
the MIDI Prefix meta-event to    specify    which    MIDI channel the description applies to, or
the channel may be specified    as text in the event itself.

FF 05 len text                              Lyric

A    lyric to be sung. Generally, each syllable will be a seperate    lyric event which begins at
the event's time.

FF 06 len text                              Marker

Normally    in a format 0 track, or the first track in a format    1    file. The    name of that point
in the sequence, such as a rehersal    letter    or section name ("First Verse", etc.)

FF 07 len text                              Cue Point

A description of something happening on a film or video screen or stage at that point in the
musical score ("Car crashes into    house", "curtain opens", "she slaps his face", etc.)

Set Tempo meta-event
FF 51 03 tttttt Set Tempo (in microseconds per MIDI quarter-
note)

This event indicates a tempo change.    Another way of putting "microseconds per quarter-
note" is "24ths of a microsecond per MIDI clock".    Representing tempos as time per beat
instead of beat per time allows absolutly exact long-term synchronization with a time-based
sync protocol such as SMPTE time code or MIDI time code.    This    amount    of accuracy
provided by this tempo resolution allows a four-minute piece at 120 beats per minute to be
accurate within 500 usec at the end of the piece. Ideally, these events should only occur
where MIDI clocks would be located -- this convention is intended to guarantee,    or at least
increase the likelihood, of compatibility with other synchronization devices so that a time
signature/tempo map stored in this format may easily be transfered to another device.

["Six identical lower-case letters such as tttttt refer to a 24-bit value, stored most-
significant-byte first."]

[So 4/4 time, 120 beats per minute would be: FF 51 03 07 A1 20 which would translate to
48 MIDI clocks per second, 500,000 microseconds per quarter note, 2 quarter notes per
second]

Time Signature meta-event
FF 58 04 nn dd cc bb Time Signature
The    time signature is expressed as four numbers. nn and dd represent the    numerator   
and denominator of the time signature as    it    would    be notated.    The    denominator is a
neqative power of two: 2    represents    a quarter-note,    3    represents    an eighth-note,    etc.
The cc parameter expresses    the    number    of MIDI clocks in a    metronome    click.    The bb
parameter    expresses    the    number    of    notated    32nd-notes    in    a    MIDI quarter-note
(24 MIDI clocks). This was added because there are already multiple    programs which allow
a user to specify that what MIDI    thinks of as a quarter-note (24 clocks) is to be notated as,
or related to    in terms of, something else.

Therefore, the complete event for 6/8 time, where the metronome clicks every three eighth-
notes, but there are 24 clocks per quarter-note, 72 to the bar, would be (in hex):

                      FF 58 04 06 03 24 08

That is, 6/8 time (8 is 2 to the 3rd power, so this is 06 03), 36    MIDI clocks    per dotted-
quarter (24 hex!), and eight notated 32nd-notes per quarter-note.

[So 4/4 time, 120 beats per second would be: FF 58 04 04 02 18 08]

4 - Program Fragments and Example MIDI Files
Here are some of the routines to read and write variable-length numbers    in MIDI Files.
These routines are in C, and use getc and putc, which read    and write single 8-bit characters
from/to the files infile and outfile.

WriteVarLen (value)
register long value;
(
 register long buffer;

 buffer = value & 0x7f;
 while ((value >>= 7) > 0)
 (
 buffer <<= 8;
 buffer |= 0x80;
 buffer += (value & 0x7f);
)

 while (TRUE)
 (
 putc(buffer,outfile);
 if (buffer & 0x80)
 buffer >>= 8;
 else
 break;
)
)

doubleword ReadVarLen ()
(
 register doubleword value;
 register byte c;

 if ((value = getc(infile)) & 0x80)
 (
 value &= 0x7f;
 do
 (
 value = (value << 7) + ((c = getc(infile))) & 0x7f);
) while (c & 0x80);
)
 return (value);
)

As an example, MIDI Files for the following excerpt are shown below. First, a format 0 file is
shown, with all information intermingled; then, a format 1 file is shown with all data
seperated into four tracks: one for tempo and time    signature,    and three for the notes. A
resolution of 96    "ticks"    per quarter    note is used. A time signature of 4/4 and a tempo of   
120,    though implied, are explicitly stated.

 |

 ---- | > ---------------------------------------
 |/ ____ O
Channel 1 ---- X --------------------------------|--------
 / |
Preset 5 -- / | --------------------------------|--------
 / ____ |
 -| | --------------------------------------
 | |
 -- |__/ --------------------------------------
 _|

 |
 ---- | > ---------------------------------------
 |/
Channel 2 ---- X ------------>----------|-----------------
 / / |
Preset 46 -- / | ----------<------------|-----------------
 / ____ | .
 -| | --------->---------O------------------
 | | (
 -- |__/ ------------------------------------
 _|

 --O--

 ----__ ---
 / .
Channel 3 - / | ---------------------------------------
 | .
Preset 70 ------ | ---------------------------------------
 / O
 ---- / ---
 /
 -- / ---

The contents of the MIDI stream represented by this example are broken down here:

Delta-Time Event-Code Other Bytes Comment
(decimal) (hex) (decimal)
---------- ---------- ----------- -----------------------------
0 FF 58 04 04 02 24 08 4 bytes; 4/4 time; 24 MIDI
 clocks/click, 8 32nd notes/
 24 MIDI clocks
0 FF 51 03 500000 3 bytes: 500,000 usec/
 quarter note
0 C0 5 Ch.1 Program Change 5
0 C1 46 Ch.2 Program Change 46
0 C2 70 Ch.3 Program Change 70
0 92 48 96 Ch.3 Note On C2, forte
0 92 60 96 Ch.3 Note On C3, forte
96 91 67 64 Ch.2 Note On G3, mezzo-forte
96 90 76 32 Ch.1 Note On E4, piano
192 82 48 64 Ch.3 Note Off C2, standard
0 82 60 64 Ch.3 Note Off C3, standard

0 81 67 64 Ch.2 Note Off G3, standard
0 80 76 64 Ch.1 Note Off E4, standard
0 FF 2F 00 Track End

The    entire    format 0 MIDI file contents in hex follow.    First, the    header chunk:
 40 54 68 64 MThd
 00 00 00 06 chunk length
 00 00 format 0
 00 01 one track
 00 60 96 per quarter-note

Then the track_chunk. Its header followed by the events (notice the running status is used
in places):

 4D 54 72 6B MTrk
 00 00 00 3B chunk length (59)

Delta-Time Event Comments
---------- ----------------------- -------------------------------
00 FF 58 04 04 02 18 08 time signature
00 FF 51 03 07 A1 20 tempo
00 C0 05
00 C1 2E
00 C2 46
00 92 30 60
00 3C 60 running status
60 91 43 40
60 90 4C 20
81 40 82 30 40 two-byte delta-time
00 3C 40 running status
00 81 43 40
00 80 4C 40
00 FF 2F 00 end of track

A    format    1 representation of the file is slightly different.    Its    header chunk:

 4D 54 68 64 MThd
 00 00 00 06 chunk length
 00 01 format 1
 00 04 four tracks
 00 60 96 per quarter note

First,    the    track_chunk for the time signature/tempo    track.    Its    header, followed by the
events:

 4D 54 72 6B MTrk
 00 00 00 14 chunk length (20)

Delta-Time Event Comments
---------- ----------------------- -------------------------------
00 FF 58 04 04 02 18 08 time signature
00 FF 51 03 07 A1 20 tempo
83 00 FF 2F 00 end of track

Then,    the track_chunk for the first music track. The MIDI    convention    for note on/off
running status is used in this example:

 4D 54 72 6B MTrk
 00 00 00 10 chunk length (16)

Delta-Time Event Comments
---------- ----------------------- -------------------------------
00 C0 05
81 40 90 4C 20
81 40 4C 00 Running status: note on, vel=0
00 FF 2F 00

Then, the track_chunk for the second music track:

 4D 54 72 6B MTrk
 00 00 00 0F chunk length (15)

Delta-Time Event Comments
---------- ----------------------- -------------------------------
00 C1 2E
60 91 43 40
82 20 43 00 running status
00 FF 2F 00 end of track

Then, the track_chunk for the third music track:

 4D 54 72 6B MTrk
 00 00 00 15 chunk length (21)

Delta-Time Event Comments
---------- ----------------------- -------------------------------
00 C2 46
00 92 30 60
00 3C 60 running status
83 00 30 00 two-byte delta-time, running status
00 3C 00 running status
00 FF 2F 00 end of track

The USENET MIDI Primer
The official MIDI 1.0 specification is available from:
IMA
the International MIDI Association
11857 Hartsook St.
North Holllywoood, CA    91607
(818) 505-8964

The complete MIDI spec as developed by the Japanese manufacturers and adopted by the
"World" at the Summer '85 NAMM show is available to IMA members ($40/yr) foor $30 non-
members $35.

The sketchy hardware and byte definitions are free with membership.

The following is an expanded MIDI definition (sort of in-between IMA MIDI 1.0 and the new
$35 booklet) entered into the public domain on USENET net.musi.synth by an altruistic
musically inclined engineer:

Bob McQueer
22 Bcy, 3151

All rites reversed.    Reprint what you like.

 The USENET MIDI Primer
 Bob McQueer
PURPOSE

It seems as though many people in the USENET community have an interest in the Musical
Instrument Digital Interface (MIDI), but for one reason or another have only obtained word of
mouth or fragmentary descriptions of the specification.    Basic questions such as "what's the
baud rate?", "is it EIA?" and the like seem to keep surfacing in about half a dozen
newsgroups.    This article is an attempt to provide the basic data to the readers of the net.

REFERENCE

The major written reference for this article is version 1.0 of the MIDI specification, published
by the International MIDI Association, copyright 1983.    There exists an expanded document. 
This document, which I have not seen, is simply an expansion of the 1.0 spec. to contain
more explanatory material, and fill in some areas of hazy explanation.    There are no radical
departures from 1.0 in it.    I have also heard of a "2.0" spec., but the IMA claims no such
animal exists.    In any event, backwards compatibility with the information I am presenting
here should be maintained.

CONVENTIONS

I will give constants in C syntax, ie. 0x for hexadecimal.    If I refer to bits by number, I
number them starting with 0 for the low order (1's place) bit.    The following notation:

>>

text

<<

will be used to delimit commentary which is not part of the "bare- bones" specification.    A
sentence or paragraph marked with a question mark in column 1 is a point I would kind of
like to hear something about myself.

OK, let's give it a shot.

PHYSICAL CONNECTOR SPECIFICATION
ELECTRICAL SPECIFICATION
DATA FORMAT
VOICE MESSAGES
MODE MESSAGES
SYSTEM MESSAGES
REAL TIME MESSAGES
AND NOW, CLIMBING TO THE PULPIT

Primer: PHYSICAL CONNECTOR SPECIFICATION
The standard connectors used for MIDI are 5 pin DIN.    Separate sockets are used for input
and output, clearly marked on a given device.    The spec. gives 50 feet as the maximum
cable length.    Cables are to be shielded twisted pair, with the shield connecting pin 2 at
both ends. The pair is pins 4 and 5, pins 1 and 3 being unconnected:

 2
 5 4
 3 1

A device may also be equipped with a "MIDI-THRU" socket which is used to pass the input of
one device directly to output.

>>
 I think this arrangement shows some of the original conception
 of MIDI more as a way of allowing keyboardists to control
 multiple boxes than an instrument to computer interface. The
 "daisy-chain" arrangement probably has advantages for a performing
 musician who wants to play "stacked" synthesizers for a desired
 sound, and has to be able to set things up on the road.
<<

ELECTRICAL SPECIFICATION

Primer: ELECTRICAL SPECIFICATION
Asynchronous serial interface.    The baud rate is 31.25 Kbaud (+/- 1%). There are 8 data
bits, with 1 start bit and 1 stop bit, for 320 microseconds per serial byte.

MIDI is current loop, 5 mA.    Logic 0 is current ON.    The specification states that input is to
be opto-isolated, and points out that Sharp PC-900 and HP 6N138 optoisolators are
satisfactory devices.    Rise and fall time for the optoisolator should be less than 2
microseconds.

The specification shows a little circuit diagram for the connections to a UART.    I am not
going to reproduce it here.    There's not much to it - I think the important thing it shows is
+5 volt connection to pi 4 of the MIDI out with pin 5 going to the UART, through 220 ohm
load resisors. It also shows that you're supposed to connect to the "in" side of the UART
through an optoisolator, and to the MIDI-THRU on the UART side of the isolator.

>>
 I'm not much of a hardware person, and don't really know what
 I'm talking about in paragraphs like the three above. I DO
 recognize that this is a "non-standard" specification, which
 won't work over serial ports intended for anything else. People
 who do know about such things seem to either have giggling
 or gagging fits when they see it, depending on their dispos-
 itions, saying things like "I haven't seen current loop since
 the days of the old teletypes". I also know the fast 31.25
 Kbaud pushes the edge for clocking commonly available UART's.
<<

See M Garvinon the subject.

DATA FORMAT

Primer: DATA FORMAT
For standard MIDI messages, there is a clear concept that one device is a "transmitter" or
"master", and the other a "receiver" or "slave". Messages take the form of opcode bytes,
followed by data bytes. Opcode bytes are commonly called "status" bytes, so we shall use
this term.

>>
 very similar to handling a terminal via escape sequences. There
 aren't ACK's or other handshaking mechanisms in the protocol.

<<

Status bytes are marked by bit 7 being 1.    All data bytes must contain a 0 in bit
7, and thus lie in the range 0 - 127.

MIDI has a logical channel concept.    There are 16 logical channels, encoded into bits 0 - 3
of the status bytes of messages for which a channel number is significant.    Since bit 7 is
taken over for marking the status byte, this leaves 3 opcode bits for message types with a
logical channel.    7 of the possible 8 opcodes are used in this fashion,    reserving the status
bytes containing all 1's in the high nibble for "system" messages which don't have a channel
number.    The low order nibble in these remaining messages is really further opcode.

>>
 If you are interested in receiving MIDI input, look over the
 SYSTEM messages even if you wish to ignore them. Especially the
 "system exclusive" and "real time" messages. The real time
 messages may be legally inserted in the middle of other data,
 and you should be aware of them, even though many devices won't
 use them.
<<

VOICE MESSAGES
MODE MESSAGES
SYSTEM MESSAGES
REAL TIME MESSAGES

Primer: VOICE MESSAGES
I will cover the message with channel numbers first.    The opcode determines the number
of data bytes for a single message (see "running status byte", below).    The specification
divides these into "voice" and "mode" messages. The "mode" messages are for control of
the logical channels, and the control opcodes are piggybacked onto the data bytes for the
"parameter" message.    I will go into this after describing the "voice messages".    These
messages are:

status byte meaning data bytes

0x80-0x8f note off 2 - 1 byte pitch, followed by 1 byte velocity
0x90-0x9f note on 2 - 1 byte pitch, followed by 1 byte velocity
0xa0-0xaf key pressure 2 - 1 byte pitch, 1 byte pressure (after-touch)
0xb0-0xbf parameter 2 - 1 byte parameter number, 1 byte setting
0xc0-0xcf program 1 byte program selected [patch assignment]
0xd0-0xdf chan. pressure 1 byte channel pressure (after-touch)
0xe0-0xef pitch wheel 2 bytes giving a 14 bit value, least
 significant 7 bits first

Many explanations are necessary here:

For all of these messages, a convention called the "running status byte" may be used.    If
the transmitter wishes to send another message of the same type on the same channel,
thus the same status byte, the status byte need not be present.

Also, a "note on" message with a velocity of zero is to be synonymous with a "note off".   
Combined with the previous feature, this is intended to allow long strings of notes to be sent
without repeating status bytes.

>>
 From what I've seen, the "zero velocity note on" feature is very
 heavily used. My six-trak sends these, even though it sends
 status bytes on every note anyway. Roland stuff uses it.
<<

The pitch bytes of notes are simply number of half-steps, with middle C = 60.

>>
 On keyboard synthesizers, this usually simply means which
 physical key corresponds, since the patch selection will
 change the actual pitch range of the keyboard. Most keyboards
 have one C key which is unmistakably in the middle of the
 keyboard. This is probably note 60.
<<

The velocity bytes for velocity sensing keyboards are supposed to represent a logarithmic
scale.    "advisable" in the words of the spec. Non-velocity sensing devices are
supposed to send velocity 64.

The pitch wheel value is an absolute setting, 0 - 0x3FFF.    The 1.0 spec. says that the
increment is determined by the receiver. 0x2000 is to correspond to a centered pitch wheel
(unmodified notes)

>>

 I believe standard scale steps are one of the things discussed
 in expansions. The six-trak pitch wheel is up/down about a third.
 I believe several makers have used this value, but I may be wrong.

 The "pressure" messages are for keyboards which sense the amount
 of pressure placed on an already depressed key, as opposed to
 velocity, which is how fast it is depressed or released.

? I'm not really certain of how "channel" pressure works. Yamaha
 is one maker that uses these messages, I know.
<<

Now, about those parameter messages.

Instruments are so fundamentally different in the various controls they have that no attempt
was made to define a standard set, like say 9 for "Filter Resonance".    Instead, it was simply
assumed that these messages allow you to set "controller" dials, whose purposes are left to
the given device, except as noted below.    The first data bytes correspond to these
"controllers" as follows:

data byte

0 - 31 continuous controllers 0 - 31, most significant byte
32 - 63 continuous controllers 0 - 31, least significant byte
64 - 95 on / off switches

96 - 121 unspecified, reserved for future.
122 - 127 the "channel mode" messages I alluded to above. See
 below.

The second data byte contains the seven bit setting for the controller. The switches have
data byte 0 = OFF, 127 = ON with 1 - 126 undefined. If a controller only needs seven bits of
resolution, it is supposed to use the most significant byte.    If both are needed, the order is
specified as most significant followed by least significant.    With a 14 bit controller, it is to be
legal to send only the least significant byte if the most significant doesn't need to be
changed.

>>
 This may of, course, wind up stretched a bit by a given manufacturer.
 The Six-Trak, for instance, uses only single byte values (LEFT
 justified within the 7 bits at that), and recognizes >32 parameters
<<

Controller number 1 IS standardized to be the modulation wheel.

? Are there any other standardizations which are being followed by most
 manufacturers?

MODE MESSAGES

Primer: MODE MESSAGES
These are messages with status bytes 0xb0 through 0xbf, and leading data bytes 122 - 127. 
In reality, these data bytes function as further opcode data for a group of messages which
control the combination of voices and channels to be accepted by a receiver.

An important point is that there is an implicit "basic" channel over which a given device is to
receive these messages.    The receiver is to ignore mode messages over any other
channels, no matter what mode it might be in. The basic channel for a given device may be
fixed or set in some manner outside the scope of the MIDI standard.

The meaning of the values 122 through 127 is as follows:

data byte

 second data byte
122 local control 0 = local control off, 127 = on
123 all notes off 0
124 omni mode off 0
125 omni mode on 0
126 monophonic mode number of monophonic channels, or 0
 for a number equal to receivers voices
127 polyphonic mode 0

124 - 127 also turn all notes off.

Local control refers to whether or not notes played on an instruments keyboard play on the
instrument or not.    With local control off, the host is still supposed to be able to read input
data if desired, as well as sending notes to the instrument.    Very much like "local echo" on a
terminal, or "half duplex" vs. "full duplex".

The mode setting messages control what channels / how many voices the receiver
recognizes.    The "basic channel" must be kept in mind. "Omni" refers to the ability to
receive voice messages on all channels.    "Mono" and "Poly" refer to whether multiple voices
are allowed.    The rub is that the omni on/off state and the mono/poly state interact with
each other.    We will go over each of the four possible settings, called "modes" and given
numbers in the specification:

mode 1 - Omni on / Poly - voice messages received on all channels and
 assigned polyphonically. Basically, any notes it gets, it
 plays, up to the number of voices it's capable of.

mode 2 - Omni on / Mono - monophonic instrument which will receive
 notes to play in one voice on all channels.

mode 3 - Omni off / Poly - polyphonic instrument which will receive
 voice messages on only the basic channel.

mode 4 - Omni off / Mono - A useful mode, but "mono" is a misnomer.
 To operate in this mode a receiver is supposed to receive
 one voice per channel. The number channels recognized will be
 given by the second data byte, or the maximum number of possible
 voices if this byte is zero. The set of channels thus defined

 is a sequential set, starting with the basic channel.

The spec. states that a receiver may ignore any mode that it cannot honor, or switch to an
alternate - "usually" mode 1.    Receivers are supposed to default to mode 1 on power up.    It
is also stated that power up conditions are supposed to place a receiver in a state where it
will only respond to note on / note off messages, requiring a setting of some sort to enable
the other message types.

>>
 I think this shows the desire to "daisy-chain" devices for
 performance from a single master again. We can set a series
 of instruments to different basic channels, tie 'em together,
 and let them pass through the stuff they're not supposed to
 play to someone down the line.

 This suffers greatly from lack of acknowledgement concerning
 modes and usable channels by a receiver. You basically have
 to know your device, what it can do, and what channels it can
 do it on.

 I think most makers have used the "system exclusive" message
 (see below) to handle channels in a more sophisticated manner,
 as well as changing "basic channel" and enabling receipt of
 different message types under host control rather than by
 adjustment on the device alone.

 The "parameters" may also be usurped by a manufacturer for
 mode control, since their purposes are undefined.

 Another HUGE problem with the "daisy-chain" mental set of MIDI
 is that most devices ALWAYS shovel whatever they play to their
 MIDI outs, whether they got it from the keyboard or MIDI in.
 This means that you have to cope with the instrument echoing
 input back at you if you're trying to do an interactive session
 with the synthesizer. There is DRASTIC need for some MIDI flag
 which specifically means that only locally generated data is to
 go to MIDI out. From device to device there are ways of coping
 with this, none of them good.
<<

SYSTEM MESSAGES

Primer: SYSTEM MESSAGES
The status bytes 0xf0 - 0xf7 do not have channel numbers in the lower nibble.    These bytes
are used as follows:

byte purpose data bytes

0xf0 system exclusive variable length
0xf1 undefined
0xf2 song position 2 - 14 bit value, least significant byte
 first
0xf3 song select 1 - song number
0xf4 undefined
0xf5 undefined
0xf6 tune request 0
0xf7 EOX (terminator) 0

The status bytes 0xf8 - 0xff are the so-called "real-time" messages. I will discuss these
after the accumulated notes concerning the first bunch.

Song position / song select are for control of sequencers.    The song position is in beats,
which are to be interpreted as every 6 MIDI clock pulses.    These messages determine what
is to be played upon receipt of a "start" real-time message (see below).

The "tune request" is a command to analog synthesizers to tune their oscillators.

The system exclusive message is intended for manufacturers to use to insert any specific
messages they want to which apply to their own product.    The following data bytes are all
to be "data" bytes, that is they are all to be in the range 0 - 127.    The system exclusive is to
be terminated by the 0xf7 terminator byte.    The first data byte is also supposed to be a
"manufacturer's id", assigned by a MIDI standards committee.    THE TERMINATOR BYTE IS
OPTIONAL - a system exclusive may also be "terminated" by the status byte of the next
message.

>>
 Yamaha, in particular, caused problems by not sending terminator
 bytes. As I understand it, the DX-7 sends a system exclusive
 at something like 80 msec. intervals when it has nothing better
 to do, just so you know it's still there, I guess. The messages
 aren't explicitly terminated, so if you want to handle the
 protocol (esp. in hardware), you should be aware that a DX-7

 will leave you in "waiting for EOX" state a lot, and be sending
 data even when it isn't doing anything. This is all word of
 mouth, since I've never personally played with a DX-7.
<<

some MIDI ID's:

 Sequential Circuits 1 Bon Tempi 0x20 Kawai 0x40
 Big Briar 2 S.I.E.L. 0x21 Roland 0x41
 Octave / Plateau 3 Korg 0x42
 Moog 4 SyntheAxe 0x23 Yamaha 0x43
 Passport Designs 5
 Lexicon 6

 PAIA 0x11
 Simmons 0x12
 Gentle Electric 0x13
 Fairlight 0x14

>>
 Note the USA / Europe / Japan grouping of codes. Also note
 that Sequential Circuits snarfed id number 1 - Sequential
 Circuits was one of the earliest participators in MIDI, some
 people claim its originator.

 Two large makers missing from the original lineup were Casio
 and Oberheim. I know Oberheim is on the bandwagon now, and
 Casio also, I believe. Oberheim had their own protocol previous
 to MIDI, and when MIDI first came out they were reluctant to
? go along with it. I wonder what we'd be looking at if Oberheim
 had pushed their ideas and made them the standard. From what I
 understand they thought THEIRS was better, and kind of sulked
 for a while until the market forced them to go MIDI.

? Nobody seems to care much about these ID numbers. I can only
 imagine them becoming useful if additions to the standard message
 set are placed into system exclusives, with the ID byte to let
 you know what added protocol is being used. Are any groups of
 manufacturers considering consolidating their efforts in a
 standard extension set via system exclusives?
<<

REAL TIME MESSAGES

Primer: REAL TIME MESSAGES
This is the final group of status bytes, 0xf8 - 0xff.    These bytes are reserved for messages
which are called "real-time" messages because they are allowed to be sent ANYPLACE.    This
includes in between data bytes of other messages.    A receiver is supposed to be able to
receive and process (or ignore) these messages and resume collection of the remaining data
bytes for the message which was in progress.    Realtime messages do not affect the
"running status byte" which might be in effect.

? Do any devices REALLY insert these things in the middle of
 other messages?

All of these messages have no data bytes following (or they could get interrupted
themselves, obviously).    The messages:

0xf8 timing clock
0xf9 undefined
0xfa start
0xfb continue
0xfc stop
0xfd undefined
0xfe active sensing
0xff system reset

The timing clock message is to be sent at the rate of 24 clocks per quarter note, and is used
to sync. devices, especially drum machines.

Start / continue / stop are for control of sequencers and drum machines.    The continue
message causes a device to pick up at the next clock mark.

>>
 These things are also designed for performance, allowing control
 of sequencers and drum machines from a "master" unit which
 sends the messages down the line when its buttons are pushed.

 I can't tell you much about the trials and tribulations of drum
 machines. Other folks can, I am sure.
<<

The active sensing byte is to be sent every 300 ms. or more often, if it is used.    Its purpose
is to implement a timeout mechanism for a receiver to revert to a default state.    A receiver
is to operate normally if it never gets one of these, activating the timeout mechanism from
the receipt of the first one.

>>
 My impression is that active sensing is largely unused.
<<

The system reset initializes to power up conditions.    The spec. says that it should be used
"sparingly" and in particular not sent automatically on power up.

AND NOW, CLIMBING TO THE PULPIT

Primer: AND NOW, CLIMBING TO THE PULPIT
>> - from here on out.

There are many deficiencies with MIDI, but it IS a standard.    As such, it will have to be
grappled with.

The electrical specification leaves me with only one question - WHY? What was wanted was
a serial interface, and a perfectly good RS232 specification was to be had.    WHY wasn't it
used?    The baud rate is too fast to simply convert into something you can feed directly to
your serial port via fairly dumb hardware, also.    The "standard" baud rate step you would
have to use would be 38.4 Kbaud which very few hardware interfaces accept.    The other
alternative is to buffer messages and send them out a slower baud rate - in fact buffering of
characters by some kind of I/O processor is very helpful.    Hence units like the MPU-401,
which does a lot of other stuff, too of course.

The fast baud rate with MIDI was set for two reasons I believe:

 1) to allow daisy-chaining of a few devices with no noticeable
 end to end lag.

 2) to allow chords to be played by just sending all the notes down
 the pipe, the baud rate being fast enough that they will
 sound simultaneous.

It doesn't exactly work - I've heard gripes concerning end to end lag on three instrument
chains.    And consider chords - at two bytes (running status byte being used) per note, there
will be a ten character lag between the trailing edges of the first and last notes of a six note
chord.    That's 3.2 ms., assuming no "dead air" between characters.    It's still pretty fast, but
on large chords with voices possessing distinctive attack characteristics, you may hear
separate note beginnings.

I think MIDI could have used some means of packetizing chords, or having transaction
markers.    If a "chord" message were specified, you could easily break even on byte count
with a few notes, given that we assume all notes of a chord at the same velocity.   
Transaction markers might be useful in any case, although I don't know if it would be worth
taking over the remaining system message space for them.    I would say yes.    I would see
having "start" and "end" transaction bytes.    On receipt of a "start" a receiver buffers up but
does not act on messages until receipt of the "end" byte.    You could then do chords by
sending the notes ahead of time, and precisely timing the "end" marker.    Of course, the job
of the hardware in the receiver has been complicated considerably.

The protocol is VERY keyboard oriented - take a look at the use of TWO of the opcodes in the
limited opcode space for "pressure" messages, and the inability to specify semitones or
glissando effects except through the pitch wheel (which took up yet ANOTHER of the
opcodes). All keyboards I know of modify ALL playing notes when they receive pitch wheel
data.    Also, you have to use a continuous stream of pitch wheel messages to effect a slide,
the pitch wheel step isn't standardized, and on a slide of a large number of tones you will
overrun the range of the wheel.

? Some of these problems would be addressed by a device which allowed
 its pitch wheel to have selective control - say modifying only
 the notes playing on the channel the pitch wheel message is
 received in, for instance. The thing for a guitar synthesizer
 to do, then, would be to use mode 4, one channel per string, and

 bends would only affect the one note. You could play a chord
 on a voice with a lot of release, then bend a note and not have
 the entire still sounding chord bend. Any such devices?

I think some of the deficiencies in MIDI might be addressed by different communities of
interest developing a standard set of system exclusives which answer the problem.    One
perfect area for this, I think, is a standard set for representation of "non- keyboard / drum
machine" instruments which have continuous pitch capabilities.    Like a pedal steel, for
instance.    Or non-western intervals.    Like a sitar.

There is a crying need to do SOMETHING about the "loopback" problem. I would even vote
for usurping a few more bytes in the mode messages to allow you to TURN OFF input echo
by the receiver.    With the local control message, you could then at least deal with
something that would act precisely like a half or full duplex terminal. .More..Several
patchwork solutions exist to this problem, but there OUGHT to be a standard way of doing it
within the protocol.    Another thought is to allow data bytes of other than 0 or 127 to control
echo on the existing local control message.

The lack of acknowledgement is a problem.    Another candidate for a standard system
exclusive set would be a series of messages for mode setting with acknowledgement.    This
set could then also take care of the loopback problem.

The complete lack of ability to specify standardized waveforms is probably another source of
intense disappointment to many readers. Trouble is, the standard lingo used by the
synthesizer industry and most working musicians is something which hails back to the first
days of synthesizer design, deals with envelope generators and filters and VCO / LFO
hardware parameters, and is very damn difficult to relate to Fourier series expressing the
harmonic content or any other abstractions some people interested in doing computer
composition would like.    The parameter set used by the average synthesizer manufacturer
isn't anyplace close to orthogonal in any sense, and is bound to vary wildly n comparison to
anybody elses.    Ther are essentially no abstractions made by most of the industry from
underlyin hardwre prameers.    hat tandarizaton exits refects only the similarity in hardware. 
This is one quagmire that we have a long way to go to get out of, I think.    It might be
possible, eventually, to come up with translation tables describing the best way to
approximate a desired sound on a given device in terms of its parameter set, but the
difficulties are enormous.    MIDI has chosen to punt on this one, foks.

Well that's abot it.    Good luck with talking to your synthesizer.

Bob McQueer
22 Bcy, 3151

All rites reversed.    Reprint what you like.

MIDI INTERFACING - DESIGNING A SOFTWARE-BASED MUSIC
RECORDER

  M.Garvin
  Xymetric Productions
  211 W.Broadway
  New York,NY 10013

INTRO

Imagine    designing    products    for    a    changing    microcomputer    market without
hardware and software standards.    Standard architectures such as      IBM    PC's    and   
Apples    have    led    to    a    proliferation    of    new microcomputer    products,      and    the   
development    of    MIDI      (Musical Instrument Digital Interface) has resulted in a similar
revolution in the    music industry.      By providing common ground for    communication, MIDI 
allows software engineers and musicians to access a wide    range of synthesizers,
computers and musical controllers.

MIDI has become virtually uncontested as a means to link synthesizers and computer
equipment,    and is now finding acceptance in many nearby industries    such    as lighting
control,    film editing,    and    automated audio    mixing.      By supporting real-time access to
so    many    devices, MIDI    has opened new dimensions for recording,    composition and   
live performance.    Now musicians can generate orchestral scores with banks of    rack-
mounted synthesizers,    coordinate sound and visual    effects, and even transmit stored
musical data over phone lines.

In    this    article I will outline several applications of MIDI    and    I will    suggest    several   
ways    to get started writing    your    own    MIDI software.    Some of the current products and
manufacturers are listed, but    these listings are by no means complete.      They are given   
as    a starting point for obtaining additional information.

OVERVIEW
PRODUCTS
SYNTHESIS METHODS
PATCH EDITORS and LIBRARIANS
SEQUENCERS
PERSONAL COMPUTER INTERFACES
WHAT MIDI DOES (and doesn't do)
MIDI HARDWARE SPECIFICATION
SPEED CONSIDERATIONS
DESIGNING A SEQUENCER
WRITING YOUR OWN PATCH EDITOR
CHOOSING A SYNTHESIZER
SMPTE (and other time codes)
SUMMARY
Bibliography

Garvin: OVERVIEW
The    MIDI    specification has remained reasonably intact since it    was first    proposed    by
synthesizer manufacturer Sequential    Circuits    in 1982.      It is sufficiently specialized to
handle most direct    musical communication,    yet    its    generality    has    allowed    it    to   
adapt    to applications which were not foreseen when it was originally drafted.

MIDI    entails    both    a hardware and a    software    specification:      the hardware consists of
a relatively fast optically isolated serial loop with    separate cables for send and receive;     
the    software    provides detailed    methods    for    transmitting    note-control    data    and   
looser specifications      for    handling    interaction    between    products      from different   
manufacturers.      MIDI works in much the same way as    modem protocol    running    on RS-
232 lines,    but it is optimized for    musical data.      Modern    MIDI record/playback systems
could be regarded    as    a type of multiprocessor network, since an intelligent master
(keyboard or computer) controls a series of devices,    each with its own onboard intelligence.

MIDI    commands    include    NOTE-ON    and    NOTE-OFF,    response    MODE    for filtering   
received    signals,    REAL-TIME messages    for    co-ordinating events, and SYSTEM COMMON
and EXCLUSIVE commands for setting up songs or    addressing    a    particular    brand    of   
synthesizer.      This    simple instruction      set    allows    enough    flexibility    to    accomodate   
most synthesizer    architectures,    while    providing    much-needed    universal music   
commands.      As more manufacturers have realized the advantages of    communicating   
with a wide array    of    musical    equipment,    MIDI's popularity has mushroomed.      There
are very few synthesis instruments sold today without MIDI interfaces.

All    MIDI    documentation    is now handled by    the    International    MIDI User's    Group
(IMUG) -- contact them for specific information or    the complete 'MIDI spec'.

PRODUCTS

Garvin: PRODUCTS
Fortunately,    the    high level of competition among musical instrument manufacturers has
been offset by specialization:    small companies can offer    transmit-only devices such as
high quality keyboards    with    no sound output,    or receive-only devices such as sound
generators which respond only to MIDI input.      Undoubtedly,    the broadest new field is that
of software-based controllers.      These usually connect between a keyboard (or other source)
and a sound generator,    where they monitor and    control    MIDI    communication.      Some   
of    the    newer    MIDI-based products include guitar, voice, and even xylophone-to-MIDI
converters (Roland,      Fairlight),      software-hardware      retrofits    for      playing digitized     
notes    from    personal    computers    (Hybrid    Arts),      MIDI- controlled reverb and echo units
(Lexicon, Korg), and MIDI-controlled audio mixing consoles (AKAI).

SYNTHESIS METHODS

Garvin: SYNTHESIS METHODS
Early    synthesizers -- used for scoring so many    old    science-fiction movies    -- were   
assembled    from    a    number    of    modules    which    were interconnected    manually    by
patchcords.      These and    other    voltage- controlled    instruments    have now attained a
certain vintage    status. New    instruments use computerized signal routing,    and    modern   
sound generating    techniques    range    from additive    synthesis    (KAWAI),    FM (Yamaha),   
phase-distortion    synthesis    (Casio),    to    actual    digital recording,    or    'sampling',    of
natural sounds (Sequential    Circuits, EMU,    Kurzweil).    Additive synthesis uses the addition
of a number of sine-wave components to produce an output    waveform.      Theoretically, any
waveform can be broken down into sine-wave components by using a process    known    as   
Fourier analysis.      It    follows    then,    that    any waveform may be recreated by adding
these same sine-wave    components. In    actual application,    the process is not so simple;   
the human ear quickly becomes bored with the 'static', or unchanging waveform which is
created.      It is this static characteristic of early    synthesizers which contributed to the
stereotyped monotonous or bland sound.

The waveforms generated by traditional acoustic instruments change as notes    are being
played,    so recreating the natural timbres of    these instruments    requires    real-time   
control    over    the    amplitudes,    or 'envelopes' of the sine-wave components.    In early
synthesizers, this was    approximated    by the use of an envelope generator    which    cycled
through    Attack-Decay-Sustain-Release ('ADSR') states in response    to key-down    and    key-
up    events.      Patching    the    ADSR    generator    into voltage-controlled filters and voltage-
controlled amplifiers provided a    primitive    level    of control over the harmonic    structure   
of    the waveform.      Newer    machines    sometimes    use a    separate    programmable
envelope    for    each    sine-wave    component    of    the    waveform.        With sufficient   
control of the amplitudes,    any conceivable sound can    be recreated without having to use
digitized wave samples.      This is the objective    of    the 're-synthesis' or 'adaptive   
synthesis'    machines, such the Roland digital piano.

FM    synthesis    uses a limited number of    sine-wave    oscillators    with individual envelopes,
so in this respect it bears some resemblance to re-synthesis    methods.      One significant
departure is in the way    the oscillators    are configured:    different 'algorithms' can be
chosen to allow oscillators to intermodulate, creating rich, and sometimes non- harmonic     
frequencies.        The    resulting    output    can      range      from clangorous-sounding    bells to
human-sounding voices,    but FM machines are relatively unpredictable and difficult to
program.

Phase-distortion synthesis involves scanning a simple (usually    sine) wave,    and    varying
the scan rate as the wave is being replayed.      In other words, the leading edge of the sine
wave can be scanned rapidly so it appears to be a nearly vertical edge;    the trailing edge
can be scanned more slowly so it has a tapered slope.      The resulting    'saw- tooth'   
waveform is much richer in harmonics than the flute-like sine wave.      Dynamic    variation of
the scan rate can change the shape    and timbre of the waveform as a note is being played.

Some of these methods of sound generation may seem to make the use of waveform
sampling unnecessary,    but in fact,    samplers can usually do much more than recreate
natural sounds.      For example, precise (up to 16-bit)    digitizations of orchestras,    drums,   
waterfalls,    or    human voice can be altered and played back at any pitch.    The elite of    the
sampling    synthesizers    (Fairlight,    New    England Digital)    can    cost hundreds of
thousands of dollars,    but they eliminate the need for    a lot    of    expensive    equipment in a
recording    studio.      New    England Digital    even advertises a tapeless studio which records
audio tracks directly to a high-capacity hard disk.      Optical Media,    Inc.    offers pre-recorded
sound libraries on 'CD roms'.    Such systems are becoming more affordable as the cost of
mass storage continues to drop.

PATCH EDITORS and LIBRARIANS

Garvin: PATCH EDITORS and LIBRARIANS
These diverse methods of sound synthesis have introduced a new    class of    problems:    a   
few potentiometers on a front panel are    no    longer sufficient to program (that's right,   
'program') a synthesizer.      One manufacturer    claims that if all of their front panel functions
were to    be made available at once,    their synthesizer would be    seventeen feet    long.     
Instead    of overlaying the limited set of    front    panel controls    with multiple modes,   
synthesizer front panel functions can usually    be    accessed    by    sending a    special    set   
of    MIDI    'system specific' commands from a computer outfitted with MIDI ports.

Synthesizer programming has become an art in the same sense as actual performance    of   
music,    and album covers frequently give    credit    to sound    programmers,    even if they do
not perform on the    album.      The sound    programs,    which can make-or-break the sound
of a synthesizer, are    known as 'patches'.      Good programmers frequently make a    living
solely    by selling their patches,    either in the form of    instruction sheets which simply tell
how to recreate the original sounds, or in a downloadable    binary    form    on    floppy    disks. 
Disk-based    systems require the use of a 'patch librarian' program to organize and access
patch    files.      Most    patch librarians    allow    two-way    communication between    the   
synthesizer and computer,    so patches can be sent to    a synthesizer, modified with the use
of the synthesizer's controls, and sent    back to be archived or backed up on disk.      Some   
sophisticated librarians (Voyetra Technologies) can handle several different    types of
synthesizers,    or even download rhythm patterns to electronic drum machines.

'Patch editor' programs differ from patch librarians in that they can actually alter the sound
of a patch.      Just as the term implies, MIDI system-specific    messages usually ARE specific
to a certain brand and type of synthesizer,    so most patch editors are designed to work with
only    one    or two types of machines.      The    system-specific    messages which are sent by
these editors are prefixed by an address code which tells    other types of machines to ignore
the data which    follows,    so patches can be sent to one device in a MIDI network without   
problems resulting    from    other    machines misinterpreting    the    data.      System specific
codes are usually published along with other technical    data in a synthesizer's instruction
manual.

Some    vendors,    such as Bacchus Software,    specialize in patch editor programs.   
Bacchus's IBM PC-based editor is a Side-Kick style memory- resident    program which pops
up over another running    music    program. Its    main    function is editing and archiving
patches for the    popular but difficult-to-program Yamaha DX-7 synthesizer.      It is usually    in
the    best interests of manufacturers to either write their own micro- based    editors    or to
hire third-party software    writers    to    support their products.      For example, DigiDesign's
waveform-editing programs allow    data to be downloaded from sampling    synthesizers,   
displayed, altered,    and    sent    back to a sampler to be    played.      They    support several   
brands    of synthesizers,    but the manufacturers value    their support,    since    they    make   
the samplers much    more    accessible    and marketable.    Some manufacturers even feature
DigiDesign's software in their own ads and exhibits.

SEQUENCERS

Garvin: SEQUENCERS
One    of    the    many    advantages afforded by MIDI    is    the    ability    to intercept    and   
record    musical events.      The recorded    data    can    be manipulated    in ways that were
impossible using standard    audio    tape recorders.    Transposition (pitch-shift), copying, and
rearranging can be    accomplished    with    software alone,    and errors made    during    the
recording    process can be corrected without having to    do    'retakes'. Compositions can
even be replayed while changing synthesizer patches, so a part which was originally written
for a cello-type voicing could be tried out with a piano sound.

MIDI-based    recorders or composition programs are sometimes known    as sequencers (a
carry-over from old analog instruments).    In the modern context,    a    sequencer    might be
visualized much like an    audio    tape machine.    Concepts such as multitracking, fast-
forward and rewind can be    translated    to software to ease the transition from   
conventional tape-oriented      studios.        New    concepts    such      as      'quantization'
(automatic timing correction),    real-time transposition,    and complex looping    constructs
would be nearly impossible with the use of    audio tape alone.

Sequencers are currently available for the IBM-PC (Jim Miller,    Roger Powell,    Voyetra),
MacIntosh (Southworth, Mark of the Unicorn), Amiga (Mimetics), Atari ST (Hybrid Arts) and
for the Commodore 64 and Apple II    (Doctor    T,    Passport).      One of the original entries in
the    IBM field is Jim Miller's Personal Composer.    It can record a performance in    real-time   
or    data    can be entered with    a    mouse    or    keyboard. Musical    data    can then be
rearranged and    edited    using    traditional staff-line    notation    and scores can be printed
on common dot    matrix printers.    Personal Composer includes a built-in patch editor for DX-
7    synthesizers,    a small graphics editor and even a    user-accessible LISP interface.

PERSONAL COMPUTER INTERFACES

Garvin: PERSONAL COMPUTER INTERFACES
If you already own one of the computers mentioned, getting started in MIDI composition is
as simple as purchasing the 'standard' interface. You    will then have access to broad range
of software packages    which can    be expanded and updated via disk (just like compilers   
and    word processors).      Some of the more common interfaces are: Passport (C-64 and
Apple II),    Opcode (MacIntosh), Mimetics (Amiga), and Roland (IBM and    Apple II).      The
Atari ST series has a built-in MIDI    interface. Most    of    these    interfaces consist of little
more than    a    UART    for handling serial communication.    The Roland MPU-401, however,
includes an    on-board    microprocessor    and timer for providing the    user    with
preprocessed, buffered data packets.

WHAT MIDI DOES (and doesn't do)

Garvin: WHAT MIDI DOES (and doesn't do)
First    of    all,      MIDI    does    not    solve    ALL    existing    problems    in interfacing sound-
generating equipment.    For example,    it is easy    to send    instructions    for    turning
particular notes    on    and    off,    and sending    a NOTE-ON command will usually result in a
predictable pitch from any two synthesizers.    There is no standard for 'a violin sound' or   
'an oboe sound',    however.    Patch numbers can be    requested    via MIDI,    but    it is up to
the individual programmer or manufacturer    to devise    the    violin    or oboe sound and
assign a patch number    to    it. Manufacturers of lighting controls or mixing boards are on
their own; system    specific    commands tell other devices to    ignore    codes    they won't
understand, but there is no standard spec for how lights should respond to music
commands.

These are some parameters which ARE standardized by MIDI:

        VOICE messages include NOTE-ON and NOTE-OFF events.      Notes    are assigned
numbers from 0-7Fh and simply turned on and    off.      Velocity information    is    included
with the command and may be interpreted    as loudness.    Channel addresses designate a
particular    oscillator    or synthesizer which will respond to the command.    Bytes from 90h
to 9Fh turn on notes for channels 0-0Fh; bytes from 80h to 8Fh turn the same notes
off.      The three-byte command to turn on note number    32h,    on channel 3, at velocity of
22h is: 93h, 32h, 22h.    The command to turn off the same note with a turn-off velocity of
10h is:    83h, 32h, 10h. Velocity    is    usually    not    relevant when    turning    a    note    off,   
so sometimes a NOTE-ON command with a velocity of zero is used as a NOTE OFF.      Other
voice commands include key pressure and pitch bend,    but these    are    not    sent    as part
of the    NOTE-ON    or    NOTE-OFF    message packets.

        MODE messages control    the    response    characteristics    of    the receiving device.   
Synthesizers can be told to 'listen' to a specific channel    (OMNI-OFF) or to respond to
messages on all channels    (OMNI- ON).      In addition,    provision is made to address one
oscillator    per channel    (MONO MODE) or to allow the synthesizer's internal    software to   
assign    its own voices so messages can be sent over    one    channel (POLY).    Combinations
of these yield four modes.

        SYSTEM    REAL-TIME and clock messages allow synchronization of all machines in the
chain via 'software-clocking' over the MIDI bus.

        SYSTEM    SPECIFIC    commands address synthesizers from    a    specific manufacturer.   
This covers patches and other data which would have no meaning    to    certain    types    of   
synthesizers,    or    lighting    control commands which should only be received by the light   
controller.      Of course,    each    manufacturer    must    apply    for    their    own    'ID'    byte
(Sequential Circuits = 1,    Kawai = 40h, etc.).    An 'END OF EXCLUSIVE' (EOX)    or    another   
status byte tells deselected    devices    to    resume listening to bus data.

        SYSTEM    COMMON messages address all synthesizers on    line.      They are used
primarily for 'setup' information such as selecting songs or telling synthesizers to tune their
oscillators.

The    leading    byte of all MIDI commands has its MSB    set    (high),    so command bytes are
always between 80h and 0FFh.    Data bytes have their MSB's reset (low),    so their range is 0
to 7Fh.      If a given block of data    contains    values greater than 7Fh,    all bytes in the block 
are broken    into    nybbles and sent in two parts.      This keeps    the    MSB's reset so that
receivers can always stay in synch -- even if a byte is lost.

MIDI HARDWARE SPECIFICATION

Garvin: MIDI HARDWARE SPECIFICATION
The    original MIDI specification made some tradeoffs    between    speed, economy,    and   
efficiency which inevitably resulted in compromises in performance.      It    is    easy to point
out shortcomings    now    that    the interface    has become widely known,    but the low cost
had a lot to do with its initial acceptance.

MIDI    is    a    serial    protocol which    communicates    on    a    31.25    KHz, optically isolated
current loop.    The odd baud rate resulted from the reluctance    of earlier manufacturers to
install special crystals when they    usually had a 1 to 4 MHz processor clock available.      Use
of    a convenient    single-chip    binary    divider yields the    31.25    KHz    UART clock.

Optical    isolation    is    required for    eliminating    ground    loops    and isolating    sensitive   
audio    equipment from the high    frequencies    in computer gear.      An optically isolated
parallel interface could    have been    specified,    but    serial interfacing decreases the cost
for    the isolators and simplifies cabling.      The penalty, of course, is speed. Clock    rates are
limited by cable capacitance and by    response    times for    economical opto's and UART's.     
Some manufacturers are now using 62.5K    (double frequency) rates for downloading
waveform    samples    or other    data-intensive applications,    but it is unlikely that the baud
rate standard will change in the near future.

The opto's at the receiving end of each MIDI link require about 5    ma to    turn    on.      Since   
the loop sends a current    (like    old    Teletype machines)    it is relatively immune to noise,   
as long as cables don't extend    more    than 50 feet.      The built-in    current    limit    resistors
prevent    star-network configurations (only one receiver may be hooked to a transmitter), so
a third port (the 'MIDI THRU' port) is included on most synthesizers to allow daisy-chaining of
receivers.      The MIDI THRU    port    duplicates    the data coming from the    MIDI    IN    port   
and retransmits it to the next machine in the chain.

SPEED CONSIDERATIONS

Garvin: SPEED CONSIDERATIONS
Most    MIDI    NOTE-ON or NOTE-OFF commands require three bytes    at    320 microseconds
per byte,    so turning on a note on the synthesizer takes approximately    1    millisecond.     
The human ear is more    sensitive    to starting    ('attack')    transients than to ending
('decay') timings    -- for    psychoacoustic    reasons,    and simply because    the    played   
notes usually    start    off sharply and taper off before their    final    decay. This means that
even in best-case circumstances where no other events are being sent over the MIDI bus,
starting transients for ten NOTE-ON events will be spread apart by 10 milliseconds.      This
approaches the threshold    of audible delay,    and additional notes may have a    'slap- echo'
effect.

To    avoid    objectionable    delays,    some MIDI    hardware    now    features multiple    MIDI   
OUT ports.      The computer sends parallel commands    to each    port    to    avoid daisy-
chaining delays.      These    should    not    be confused    with    MIDI    THRU    ports,    which
track    the    MIDI    IN    port. Multiple    MIDI IN ports are less common,    but certainly helpful   
when recording events coming from more than one source.      Since MIDI is    a multi-byte
protocol,    merging and recording two sources can be fairly complex if only one input port is
available.

DESIGNING A SEQUENCER

Garvin: DESIGNING A SEQUENCER
MIDI    control    software    can be written in    any    language,    but    fast queuing    of    serial   
data is important.      The    majority    of    software writers that I know use a mixture of C and
assembly language.    It may be    convenient    to    use a compiler such as    Wizard    C,   
which    allows dropping into assembler for I/O access or speed.

Small    computers    can    be used,    but be aware that RAM    can    be    used quickly.      If   
storage for a single note uses eight bytes,    an eight- finger chord will use 64 bytes,    and
playing eight of these chords in one measure will use half a K of RAM.      Linear address
space is    easy to    allocate and control but segmented architectures present no large
problems,    since a segment is usually more than enough to record    any single    sequence of
note events (a 'track' in recording terminology). Bank-select    RAM is usually a problem when
several tracks are    played back in parallel.      If the tracks are stored in separate    banks,   
the switching overhead may be cumbersome.

Most    of    my current designs use IBM PC's and AT's,    so some    of    the examples    will
focus on 8088 designs,    but the design principles will adapt easily to other computers.

DESIGNING HARDWARE
STORAGE FORMATS
ADVANCED FEATURES
DISPLAY METHODS

Garvin: DESIGNING HARDWARE
Custom    hardware    affords some measure of software security    and    may provide
functions not available on existing interfaces.      Since    some designers    prefer    using   
their own hardware,    I will provide    a    few guidelines.

MIDI's serial protocol requires no hardware handshake signals, so 40- pin    UART's are not
necessary.      The only small UART that    may    cause trouble    is the Intel 8251.      I have
used Motorola 68B50's in several designs with good results.      On 8088 systems,    Motorola's
E    (enable) signal can be developed by 'anding' port read and write.

Timers    get tricky when multiple devices are hooked to one    interrupt line.      I    have used
Intel 8253's,    but I usually connect the    output line    to    a    flip-flop so that the output pulse
can    be    trapped    and identified.      Flip-flops    are not necessary if the timer interrupt is
isolated, since the 8259 interrupt controller has edge-triggering.

Timers    will not be required on IBM-PC's using the Roland    interface, but if you are
designing your own,    try to include an on-board timer. The    PC's    internal timers do not
provide the accuracy    necessary    to deal      with    high-resolution    music      timing.        For     
low-resolution applications, IRQ 0 from the PC mother board can be readjusted to run at a
multiple ('X') of its normal speed.    Then, every 'X' pulses, the old    interrupt is run.      The
interrupt acknowledge should be    skipped when    jumping to the 'old' routine.      Remember
to reset the interrupt vectors before exiting to DOS.    Disk head loads use timer 0 for time-
outs,    so problems with this routine usually cause the drive light to stay on.

Slower    clock    rates    for hardware timers will    obviously    result    in decreased resolution.   
Not so obvious, though, is the way that tempo resolution    and    note-timing accuracy
combine to    make    even    tougher demands on the system timer's crystal frequency.      I try
to clock the timer    at around 2 MHz so that I can record with resolution of    about 96   
divisions per quarter note while maintaining sufficient    accuracy in specifying tempos.

In most applications,    the divisor sent to the hardware timer is used to trim the tempo,   
which is set in increments of 'beats-per-minute'. An    easy way to control tempo is to index
into a table of divisors by the desired number of "BPM's".    I normally generate the tables
with a 'C'    program    which does the calculations and prints out    the    tables exactly    as
they should appear in the sequencer    program.      When    the values are verified, I redirect
the output of the program into a file which is then compiled.

INTERRUPTS

The    interrupt service routine (ISR) is responsible for    prioritizing interrupts    and    co-
ordinating all incoming data.      Obscure    problems with the ISR can propagate through the
entire system.      A    flow-chart will    probably help to clarify possible timing errors or   
bottlenecks before the ISR is coded.

It    might appear that a system using only serial ports would pose    no problems in I/O
handling, but MIDI baud rates are high, and there may be multiple ports.    Input interrupts
should be serviced as quickly as possible    because    losing    a byte may result in losing    an 
important NOTE-OFF    message.      When    the recorded events are    retransmitted    on
playback, the synthesizer will play a 'stuck note' until the operator can    figure    out a way to
generate a NOTE OFF (sometimes    leaving    an embarrassed    performer    desperately
groping for    the    power    switch). Output    interrupts are less critical;    a momentary delay is

the    only penalty for slow output response times.      Be particularly careful how these    two
interrupt sources are handled when UART hardware lines are shared.

On    the IBM PC,    the first instruction in the ISR can be an STI    (the BIOS    does this) for re-
enabling higher priority    interrupts.      Lower priority    interrupts can be enabled by masking
the present    interrupt and    sending an acknowledge (EOI) to the interrupt    controller.      The
pending    interrupt    cannot    be retriggered until the    source    of    the interrupt is reset
(UART is read,    etc.).    Make sure that the pending interrupt line is high (active) when
sending the EOI, because obscure problems    can result with the 8259 when it cannot find
the source    of the interrupt being acknowledged.      It may also help to poll the 8259
registers to make sure that the interrupt line is low before    exiting from the ISR.      This will
help to avoid difficulty with the PC's edge triggered hardware.

Timer interrupts are important,    but they can generally be considered a    lower priority than
UART interrupts.      The timer routine itself is usually short,    consisting of little more than
incrementing a    series of    software counters,    but at some point compares must be made   
with 'target' values and a long series of events may be triggered.

The    timer    interrupt conveys no actual data aside from    a    flag,    so normal    queues    are
not necessary.      The best way to 'enqueue'    timer interrupts    is    with the use of a
semaphore,    which    allows    the    ISR itself    to    be    interrupted.      When    the    timer   
'tick'    occurs,    the semaphore    is    incremented and THEN timer interrupts are    re-enabled.
If the semaphore has been incremented to 1,    no interrupts are nested and    normal
processing can resume.      If the value is greater than    1, this    means    that    the    timer
interrupts    have    stacked    up,    so    the interrupt is exited,    and control is returned to the
timer ISR    which was    interrupted.      Before    the timer ISR is exited the semaphore    is
decremented,    and if the value is still non-zero, the interrupts must have been nested.      In
this case,    control is returned to the top    of the    timer    ISR,    which repeats until the
semaphore returns to    zero. This    allows the routine to catch up with 'lost'    interrupts   
without losing any timer pulses or UART interrupts.

The    flow    chart (fig 1) is simplified;    it may help to refer to    the code    listing    (listing 1)
for more subtle details.      Make    sure    the semaphore    is    initialized to zero at startup or
the timer    ISR    will never run.

TIMING NOTES

The    MIDI    sequencer will usually use a hardware clock for    its    main timing    reference,   
but    it    may be necessary to    synchronize    to    an external    software    clock    provided    by
a    drum    machine    or    timing converter.      I    will refer to these as internal and    external   
synch, respectively.      MIDI    software clocks occur at a standard rate of    24 per    quarter   
note,    which    provides musical resolution to    within    a sixty-fourth    note triplet.      This
sounds like it would keep up    with even    the fastest musicians,    but remember that we are 
dealing    with timing EDGES.      Trimming these edges to the nearest 24th of a quarter note   
may    cause    the recorded notes to    sound    too    symmetrical,    or mechanical.

Conversely,    it    may seem that slowing the system clock could correct the timing of
inaccurate note values.    This rounding ('quantization') is    sometimes    used    to advantage, 
but    overuse    removes    the    human signature    and    creates    a    metronomic,     
mechanical    sound.      Uneven qualities    are most often missed on parts such as solos which
appear 'up    front' in a composition.      Obviously,    all devices    synchronized with MIDI real-
time clock signals will be quantized to some extent.

TIME-STAMPS

In    order    to maintain very precise timing of events    while    allowing interrupts to procede
at full speed, I store a 'time-stamp' with each event coming into the UART receive queue.   
Very simply, if a received byte    is greater than 7Fh (MSB is set on commands),    the current
time is enqueued after the byte.    This provides 'freeze-frame' timing; the time record travels
with the received data until the program is ready to    process    it.    Only    the leading byte
needs    to    be    time-stamped. Follow-up    data (with MSB's reset) are assumed to have
been    received at    the same time.      This technique can provide accuracy better    than that
obtainable by waiting for the complete record and processing    it instantly.      Usually    the   
sending device intends that all    bytes    be received    simultaneously,    so    stamping    the
leading byte    will    more accurately reflect the actual event timing,    even if the    transmitter
lags in sending the follow-up data.

REAL-TIME

The    MIDI specification calls for two basic types of software clocks. 'Clock-in-stop'    (0FCh)
allows receivers to phase-lock to    the    clock frequency    prior    to    start-up.      When the   
transmitter    switches    to 'clock-in-play'    (0F8h),    all synchronized receivers switch to    their
active    state    (usually playback or record).      To maintain    accuracy, real-time messages
are transmitted at any time -- even in the    middle of    other    multi-byte    messages.     
Receivers must    account    for    this possibility even if the real-time messages are not used.   
Both clocks are    always    sent at the rate of 24 per quarter note.      Altering    the clock
frequency will change tempo, not accuracy.

Other real-time messages include 'START-FROM-BEGINNING' (0FAh)    which resets      internal 
song    pointers,      'CONTINUE'    (0FBh)    which    tells receivers    to resume from the current
location and    'ACTIVE    SENSING' (0FEh)    which    just lets the receivers know that the   
transmitter    is still    there.      The latter is optional and used notably by the Yamaha DX-7   
synthesizer.      When    using a DX-7,    you will probably    want    to discard    the 0FEh bytes,   
since they will be received    constantly    -- even    when not recording.      They can fill up the
input queues if    the input interrupts are enabled.

The    last    real-time    message,    'SYSTEM RESET'    (0FFh)    is    dangerous because it could
start a regenerating condition where every component in the system sends resets to each
other.    It is usually reserved for linkage    to a hardware reset switch or used judiciously by
the master controller.

Garvin: STORAGE FORMATS
There is no standard yet for either RAM or disk-based    storage    for MIDI events.      I have
heard rumors of a standard for    disk    storage which would allow one manufacturer's
software to read files    written by someone else, but intermediate RAM storage is another
story.    The storage formats used throughout the industry are diverse, and usually so   
complex that changing internal formats would    require    extensive rewrites.

This is out of date. See: Standard MIDI-File Format Spec. 1.1

Most internal storage methods fall into one of four categories    which I    will    call    'end-
point-relative',    'end-point-absolute',    'single- point-absolute',    and    'bar-and-note' storage. 
All storage    formats involve    storing    data    in a linear    data    stream.      Relative    timing
implies    that timing will be encoded as a distance from the    previous event.      Absolute   
timing will use a global time reference,    such    as beats    and    bars.      End-point    storage   
refers    to    separate    storage locations    for    NOTE-ON and NOTE-OFF events (usually with   
their    own time-stamps).      Single-point storage requires that a pointer be aimed at the
NOTE-ON record in the data stream, and when the NOTE-OFF event is received,    it is stored
at the same location (better yet, the note DURATION    can    be    computed and    stored).     
The    bar-and-note    method parallels    the    way    music    is    normally    notated.    Each   
method    has advantages, and there is a lot of overlap between categories.

I    will    try to carry MIDI's philosophy of setting MSB's    of    leading bytes when encoding
data for storage in the stream.      This will allow resynching if a byte is missed,    and will
make data streams easier to edit.    Many software writers use this method for internal
storage.

END-POINT-RELATIVE STORAGE

MIDI data is received as a stream of bytes with high bits (MSB'S) set on commands and reset
on data.      Why not store the bytes just as they are    received?      Embedded    MIDI    clock
messages provides    the    proper spacing for NOTE-ON,    NOTE-OFF and other events.     
Replaying the data requires setting up a series of 'play pointers' into the data    stream (one   
for    each    track    to be played).      When the    start    command    is received,    the    data    is   
sent to the output UART's just    as    it    was received,    waiting for a 24th of a beat every
time a clock command is encountered    in    the stream.      Unfortunately,    this method    uses
RAM storage    even    if    no events    are    being    transmitted,    and    multiple channels store
multiple copies of all unnecessary timing bytes.

 Ex:
- F8h --------- F8h 94h 46h 32h -------------- F8h 84h 46h 16h ---------- F8h
|wait 24th |wait 24th, then |wait 24th, then
|| output a NOTE-ON on ch.4 | output a NOTE-OFF on ch.4
|| for note no. 46h | for note no. 46h
|| velocity = 32h | OFF velocity = 16h

In    this example,    it is assumed that an external MIDI clock provides the    timing.      Even if
an internal timer is used,    0F8h bytes can    be inserted into the input queue to simulate the
MIDI software clock.    A refinement of this method conserves storage by counting all   
received clock    bytes.      When an event is received,    the accumulated count    is stored
BEFORE the event and then the counter is reset.

END-POINT-ABSOLUTE STORAGE

Time-stamping    requires a system timer that is incremented every time a    MIDI    clock or
timer interrupt is received.      When    MIDI    data    is enqueued,    the    system    timer is
copied into the queue as    the    time- stamp.      When    the    data is dequeued for storage,   
the time-stamp    is stored    with the data record to provide an accurate    absolute    timing
reference.      Unlike    relative timing,    this allows the user to locate any    spot    in the data
stream without counting    all    embedded    timing bytes.      To    replay time-stamped data,   
restart the system timer    and wait    until it matches the timing bytes of the first item in the
data stream.      Then send the data (without the time-stamp) and advance the stream
pointers.

 Ex:
 ----94h 09h 03h 46h 32h -------------- 84h 08h 04h 46h 16h -------
|output a NOTE-ON on ch.4 |output a NOTE-OFF on ch.4
| on the ninth clock tick | on the eighth clock tick
| of the third beat | of the fourth beat
| for note no. 46h | for note no. 46h
| velocity = 32h | OFF velocity = 16h

The example uses only two bytes for the time-stamp and for the system timer.      More   
practical systems use three bytes,    to allow over    two hours    recording    time before the
timer overflows (at 96    pulses    per quarter).    The low-order byte is incremented until it
reaches 96, (or 24    for    MIDI clock timing).      Then the byte is reset and    the    count
propagates    through the other two timer bytes.      The top timer    bytes 'turn over' at 127 so
the MSB's are always zero.

SINGLE-POINT-ABSOLUTE STORAGE

Single-point    storage    requires    maintaining a list    of    pointers    to access active notes in
the data stream.      When a NOTE-ON is received, it is enqueued and stored in the data
stream in the same way as    end- point-absolute    storage,      but    zero's    are    stored   
afterward    in    a compartment reserved to keep track of the note's duration.    A pointer to   
the    zero-bytes    is    stored    in a list to    allow    access    to    the duration.      Every    time    a   
MIDI clock byte    or    timer    interrupt    is received, the list is checked, and the pointers are
used to increment duration bytes.      When the NOTE-OFF event is received, the pointer is
removed from the list -- no other action is necessary.      The duration will    be    frozen as part
of the note    record.      Single-point-absolute storage    provides advantages in editing (notes
can be moved    easily), and    display    (it is easy to tell whether a note is a    quarter    note,
half note, etc.).

 Ex:
 --94h 09h 03h 46h 32h -------------- 04h 01h ---------------------
 | output a NOTE-ON on ch.4 These are duration bytes which
 | on the ninth clock tick travel with the note record and are
 | of the third beat incremented by each timer tick
 | for note no. 46h until NOTE-OFF is received
 | velocity = 32h

During playback,    NOTE-ON's are derived in the usual way (wait    until the system timer

reaches the embedded time-stamp),    but this time the duration    bytes are retrieved and
stored in a 'timeout'    list.      They are    decremented with every timer tick,    and when they
reach zero,    a NOTE-OFF    is transmitted.      The timeout list must keep a copy of    the note
number so that the proper note can be turned off.      The    single- point    method    affords
another advantage:    it is unlikely that    notes will get stuck.      NOTE-OFF events cannot be
missed.      Any    reasonable value in the timeout list will eventually decrement to zero and
cause a NOTE-OFF to be sent.

BAR-AND-NOTE STORAGE

So far,    I have discussed playing notes,    but not rests.      Of course, rests    are simply the
spaces between notes,    but the storage    formats outlined    do    not    provide a way of
tracking down    these    spaces    for correlation with written music.      Rests can be stored in
the same way as notes, but note numbers and velocities are not needed.    This seems to   
be    a reversion to the original relative timing method    when    you consider    that rests are
similar to the old embedded relative    timing markers.      Now    the NOTE-ON time-stamps
become redundant -- where one note-or-rest    stops,    the    next will start.      Without some   
frame    of reference,    though,    it is difficult to find a designated spot in the data stream.      I
have borrowed another device from written music: bar lines.      There    is no MIDI equivalent
for a bar line,    so I will    use 0BAh.    The bar marker will be followed by one-or-two-byte bar
numbers to allow absolute locations to be found.      This combines some of    the better
features from all the methods outlined above.    I will use 0A0h as the token for a rest.

Ex:
-0BAh 32h -----0A0h 02h 14h ---------- 94h 46h 32h ---------------01h 02h---
| At bar #32h | rest | output a NOTE-ON on ch.4 duration
| | for two beats | for note no. 46h is 1 beat
| | and 14h ticks | velocity = 32h and 2 ticks

Some    storage    formats    are better suited to    certain    approaches    to editing    or    to
certain looping constructs or display    formats,    etc. Choose a format that suits your
application,    but remember to take as general an approach as possible.    You will
undoubtedly want to expand later to incorporate new ideas.

QUANTIZATION

Quantization    was first mentioned in the context of scaling down    the system    clock.      If a
section of music was recorded using a 96    pulse per quarter note clock,    the system clock
can simply be slowed to    24 pulses    per quarter note.      Each timer interrupt would then
increment the system timer by 4 instead of 1.    This method works but it has one main   
drawback.      If there is no frame of reference    (an    unquantized track,    for    instance)    it   
may not be noticed,    but all    notes    will effectively be shifted LATE by the quantize interval.
This is    like truncating a number when the real intention is to round it.

To    quantize    events so that the notes fall ON the beat    rather    than AFTER    the    beat,   
the timing target must be ANTICIPATED by half    the amount    of    the    quantization    period. 
This    causes    events    to    be processed in the center of a 'quantize window'.      To

accomplish this, the    system    timer contents are copied to a    'look-ahead    timer'    and
incremented    so    that    it LEADS the actual system time    by    half    the quantize interval.   
Using look-ahead timers for compares will trigger events    ahead of time.      Remember just
to run the clock routine every Nth clock tick and to add N/2 to the current time to derive the
look- ahead timer.

The    same    result    can be accomplished by    first    running    the    clock routine    N/2    times
consecutively (This    accounts    for    look-ahead). After    this initial look-ahead,    the clock
cycle consists of    waiting for    N    clock    periods    and then running the clock    routine    N   
times consecutively.

Quantization will clean up notes whose timing is slightly 'frayed    at the    edges',    but some
mistakes can actually be accentuated.      If the mistake    is    severe enough to fall outside of
the    intended    quantize window, note timing will be rounded in the wrong direction as in
NOTE #3 of fig. 2.

It    was mentioned that the trailing edges of notes are    usually    much less    timing-critical   
than the leading edges.      One of    my    favorite techniques    for avoiding a mechanical
sound is quantizing the leading edges    of    notes    but    leaving    the    lengths    intact.     
This    can    be accomplished by using a look-ahead on the clock which pulls the NOTE- ON
event and NOTE-LENGTH from the data stream.      The unprocessed note length    is stored in
a timeout list where it is decremented    on    each tick    of the HI-RESOLUTION clock.      The
appropriate NOTE-OFF is    sent when it reaches zero.

The    timing    of recorded music is easily altered    or    quantized,    but random    timing
information from human input is difficult to add later (you COULD try it).    Some synthesizer
systems, such as Fairlight, use high-performance    hardware    to derive timing clocks as   
high    as    384 clocks    per quarter note,    but be aware of micro-based software which
claims this level of accuracy.      By attempting performance beyond the capability    of    the   
machine,    the software    can    actually    sacrifice accuracy.

PILOT TRACK

Most    musical compositions have verses,    choruses and other types    of sections.    Sections
are usually recorded or written separately.    When all the sections are completed,    they are
rearranged,    repeated, etc. by the use of what I will call a 'pilot' track.      The pilot track    in
this    type of system will operate 'outside' of the time frame of    the composition.    In fact it
may be the only timing stream which moves in a    linear fashion.      Macro commands,    such
as 'play section    3,    five times'    will pilot the interpreter through the appropriate series    of
pointer loads, plays and reloads to accomplish the task.

The start of each section now becomes the main point of reference for note    timing.      At   
the end of a section the system timer is    usually reset and the pilot track is consulted to find
the next section to be played.      Each    section    will    be    treated as if    it    is    a    separate
composition, so each may continue up to the maximum length allowed by the system timer.

Some    pilot track schemes use a FORTH-type stack to hold    reiterative constructs    and   
section    or data references.      I have    even    seen    a sequencer which allowed English
statements such as 'SECTION 3 = VERSE 1 + CHORUS'.      In any case,    the section is
treated as a    subroutine, with    control    returning    to    the pilot track when    the    section   
has completed.

 Section 1 Section 2 Section 3
 |==================| |==========| |==================|
 ^ (play 2nd) ^ (play 3rd) ^ (play 1st)
 || | (play 4th)
 | / ^
 | / |
 | /|
 | / |
 |/ |
 | / |
 / |
 ------------------- |
/ | |
 / | |
 | Play sect 3 | Play sect 1 | Play sect 2 | Play sect 3 |
 |===|
 | Pilot track

Garvin: ADVANCED FEATURES
If    you've    made it this far,    you may be interested in some    of    the extensions to MIDI
protocol to allow more rapid transmission of event triggers.    'Running status' says that the
receiver will keep the last command byte received.    If additional data bytes are received
without command bytes, the old command bytes will be used.

To transmit NOTE-ON's on channel 3 for note numbers 22h,    33h and 44h with    velocities   
of 55h,    66h and 77h the following bytes    could    be sent:

 93h--------------22h---55h---------33h---66h---------44h---77h------
 | | | | | | |
 NOTE-ON cmd note# vel note# vel note# vel
 Ch 3 first note second note third note

Duplicating    the same series with an 83h as the first byte will    turn the notes off again.

To make this feature more useful, the special condition 'NOTE-ON with velocity    =    0'    is
reserved to signal    a    NOTE-OFF    operation.      Its function is identical to the normal NOTE-
OFF but since it is actually a NOTE-ON command, the 'running status' rule applies.    The
same notes could be turned on, and off again by the following bytes:

 93h-------22h--55h---33h--66h---44h--77h----22h---0----33h---0-----44h---0
 | | | | | | | | | | | | |
 NOTE-ON note# vel note# vel note# vel note# vel note# vel note# vel
 Ch 3 first_note second_note third_note first_note second_note third_note

Remember    that    NOTE-OFF's won't actually be sent    immediately    after NOTE-ON's.      If   
any    other command bytes are sent    in    between,    the 'running    status'    is    interrupted   
and    the    command    byte    must    be retransmitted.

Garvin: DISPLAY METHODS
Storage    methods can be related to display methods in that    the    note events can be
displayed at one spot (as a conventional music note) or they    can    be displayed as a
(usually horizontal) band on the    screen with start and end points representing the start and
end of the note. The    latter    method,    sometimes known as    piano-scroll    notation,    is
analogous to the end-point storage method that I have outlined.      So, do    software
designers who use single-point storage use    conventional notation    and    designers    using
end-point    storage    use    piano-scroll notation?    Of course not.    Strangely enough, some of
the more popular software packages use exactly the opposite techniques as expected.

Both display methods have advantages:      piano-scroll notation can    be very    'visible' to
musicians who are not accustomed to reading music, while    conventional    notation   
maintains    high    information    density. Also,    conventional    notation    always requires   
graphics    capability. Piano-scroll can usually be done with text-mode graphics.

Displaying    notes    on staff lines requires at least 4 or    5    vertical pixels    per line on the
staff,    for a total of 17 to 21 pixels for    a complete staff line (four lines times 4-5 pixels plus
an extra line). I have seen sheet music with notes printed as far as six spaces above or   
below the staff,    so it is wise to allow a lot of blank space    on each    side    of a staff line.   
Allowing 60 vertical pixels    total    per staff    should    yield    five or six staff lines    on    a   
high-resolution screen.

Horizontal    formats    are usually best handled and    allocated    by    the byte.      A    screen   
640 pixels across would divide into 80    horizontal compartments      with    screen    objects   
treated    somewhat    like      ASCII characters    but    with variable widths (a G-Clef will require 
two    or three character widths).

Despite the popularity of IBM computers,    the CGA's unfortunate    lack of    adequate   
screen    resolution has limited its use    for    staff-line oriented    editors    or forced earlier
sequencers to    use    Hercules    or other non-IBM graphics boards.      The CGA screen
produces very square- looking    notes,    so    conventional notation on this screen may not   
be worthwhile.      I find the EGA graphics board extremely slow to    write, but color is a
valuable tool for displaying music.    Notes on a staff- line    can be color-coded to designate
channel numbers (to allow    more than one channel per staff-line).    Monochrome editors
sometimes allow selection    between two channels per staff by directing note stems    up or
down.

Display    formats will depend largely on the display devices you    have on    hand or wish to
support.      While EGA boards have finally made the IBM    PC competitive with other
computers when displaying    color,    you may    only    want    to enter musical notes and then
print    them    out    on paper.      Some    music    transcribers are using    Jim    Miller's    software
without    ever    buying MIDI hardware for their computers.    When    doing black    and white
printouts,    obviously a Hercules mono graphics    card will suffice.      The Hercules board has
720 horizontal    pixels,    which ends    up looking a lot longer than the EGA's 640 pixels
(sometimes    a full bar of music).

Editors for note events take many different forms,    but list-oriented editors are the easiest
to design,    followed by piano-scroll editors. List    editors can simply convert a list of note
numbers into    NOTE-ON and    NOTE-OFF events.      This may be adequate if the main
function    of the software is to record live music being played on a synthesizer.

Most    piano-scroll editors use strict binding between screen position and note events.      For
example,    the screen is sometimes    partitioned into    an even bar of music.      The X-axis
position of the cursor    will then relate directly to the music's time domain.

Staff-line    editors    usually require a complex series of pointers    to correlate    records in the
data stream with locations on    the    screen. Using    a    cursor to locate and change a point
within the    music    data stream can be a difficult task because the screen spacing may be
non- linear    when related to the time domain (a bar consisting of a single whole-note    will   
be    shorter    than a bar which    holds    a    series    of sixteenth-notes).        Many    staff-line   
editors    DO    require    vertical alignment of synchronized events,    such as left and right
hand    piano parts    which are written on separate staffs.      This allows the screen to    be   
swept from left to right with a single    X-axis    pointer,    but strange    timing    errors    will be
introduced    by    the    converter    when vertical    alignment is not maintained.      If you are
writing this type of    editor/converter,    I recommend keeping a separate X-axis    pointer for
each staff line.      Staff-oriented editors are further complicated by the need for multiple data
representations.    The on-screen symbols usually must be transformed into a format which is
quite different in order to play them as MIDI notes.

A    piano-scroll    editor is a good starting point for    an    experienced software    writer    who
has limited knowledge    of    traditional    musical concepts.      Only the most experienced
writers should attempt to write a    staff-line    editor,    as it requires a thorough knowledge of 
music theory as well as programming.

Garvin: WRITING YOUR OWN PATCH EDITOR
One    of    my    current projects is a patch editor    for    the    Kawai    K-3 synthesizer,    so I can
explain exactly how patch editing works.      The K-3    generates sound by building waveforms
from sine wave    harmonics. These    waveforms can be manipulated from the K-3's front   
panel,    but the    addition    of a computer screen offers an enormous    advantage    in
visualizing    sounds    as    waveforms are being    altered.      In    my    wave editor,    color-
coded    bars    move    to indicate    harmonic    numbers    and amplitudes.      As    the operator
tailors the waveform by adjusting    the on-screen    representation,    an    internal    table    of   
values    is    also adjusted.      Just as in a text editor,    different versions of the data can    be   
saved to disk as the waveforms are being    edited.      The    K-3 holds only one internal user-
defined wave, but I hold up to a hundred waves within one file so they can be compared and
interchanged.

When    a patch or wave is ready to be sent to the K-3,    a MIDI    system exclusive     
command    tells    the    synthesizer    to    expect    new      patch information.    No acknowledge
is necessary -- the harmonic numbers and amplitudes are sent out immediately.     
Transmitted data can be of any length    but 8-bit data must be sent as two separate nybbles
to ensure that    the MSB's will be reset (0).      Because of the potentially    long data stream,   
KAWAI requires a checksum for confirmation, but this is entirely    up to the manufacturer.     
The data packet is closed    by    an end-of-exclusive    byte    which lets the synthesizer get
back to    music processing.

The bytes sent to the K-3 to set up a wave look something like this:

F0h-40h-0h-20h-0h-1h-64h----0h-1h--0h-5h-...........--1h-9h--1h-0Fh----0F7h-
 | | | | | | | | || | | |EX | CHAN | GRP | INTRN HARM=1
AMP=5 (more-data) HARM=19h AMP=1Fh EOX
KAWAI FUNC# K3 WAVE

Data    formats    for    send    and    for    receive    are    identical,    so    two synthesizers can be
hooked together for trading waveforms,    or    waves can be sent to the computer, modified,
and then sent back to the K-3.

Every    manufacturer and synthesizer has a different format for system specific commands.   
Consult synthesizer manuals for details.

Garvin: CHOOSING A SYNTHESIZER
If you will be testing your MIDI software by recording music in real- time, you will need a
keyboard or other source of MIDI note messages. If cost is a factor,    look at Casio's CZ-101
(miniature keyboard)    or CZ-1000    (larger version).      In a slightly higher price bracket,    the
Kawai    K-3    has a very good performance-to-cost    ratio.      Yamaha    has developed    a wide
range of FM instruments,    and their DX-7 series    is one of the best-selling synthesizers in
the over-$1000    range.      Korg also makes several affordable machines.

If you are interested only in patch editors,    or if you already own a MIDI keyboard,    consider
using a stand-alone sound generator.      These are    becoming    more popular,    since one
MIDI keyboard can    control    a number of slaved sound generators.      Kawai has introduced
a keyboard- less version of their K-3 synthesizer, and Yamaha has just introduced a module
(the FB-01) for under $400.      Low-cost rack-mounted sampling units include the AKAI model
S612 and the Ensoniq Mirage.

The    eight-voiced    FB-01    and the four-voiced Casio CZ-101    can    both assign separate
tone patches to each voice.      In other words, a piano sound,    a violin sound,    and a horn
sound may all be played at    once. This    is an advantage to the software designer,    since
the module can be    made to respond like multiple synthesizers.      It is difficult    to assign or
'prioritize' multiple voices with a single keyboard, so the Casio    allows this 'MONO-MODE'
operation only when sounds are    played and assigned by an external computer.      The FB-
01,    of course, has no keyboard.

Synthesizer keyboards generally have non-weighted plastic    keys.      If you    prefer a
keyboard which feels more like an acoustic    piano,    you may    want    to    invest    in one of
the    higher-quality    MIDI    keyboard- controllers,    such    as the Roland MKB-1000 or   
Yamaha    KX-88.      Since these    are    output-only    keyboards    (they    have    no    sound-
generation electronics), they must be used in conjunction with an external MIDI- controlled
sound generator.

The sound of a synthesizer depends both on its electronics and on its programming,    so    it   
is    impossible    to    categorize    every    type    of instrument.      There are some guidelines,
however.    Oscillators may be analog or digital.    The difference is somewhat like comparing
records and compact discs:    digital oscillators are very precise and they can produce    a   
wide range of timbres,    but some say that they    lack    the warmth of analog oscillators.     
Analog machines,    such as the Roland, Moog,    or Oberheim synthesizers,    are known for
producing rich string patches    or    resonant brass sounds.      Digital machines,    such as    the
Yamaha line,    excel at more percussive sounds,    like pianos or bells. Samplers    can   
capture    very breathy,    human    or    flute-like    voices. Musicians    often    use    different   
types    of    synthesizers    to      cover different    ranges of tonalities,    but the ranges overlap
quite a bit. Listen to as many patches as possible before making your choice.

Garvin: SMPTE (and other time codes)
Computerized    recording is becoming very popular,    but    the    accepted medium for
interchange of completed music is still audio tape.      Tape is necessary for recording voices,
guitars, and acoustic instruments, and    for    transporting    sounds between studios which   
have    different types of synthesizers or drum machines.    Synchronizing tape-based and
computer-based recording mediums can be    difficult.      Fortunately,    a solution to many of
the problems already exists in the form of 'time- code'.

Time    codes of various types have been in use for many    years.      They are    used to 'lock'
audio recorders to video machines for movie sound tracks and for time-stamping video tape
for TV news.    One of the most popular    forms of time code was devised by NASA as    a   
simple,    fixed time    reference for their experiments.      They used recordable    audio- range
pulses in a format known as bi-phase modulation.    Bi-phase uses clock transitions,    rather
than states of polarity,    to encode binary data.      This    means that the output will never be
a non-recordable DC voltage.      The    80-bit    serial    data stream encodes    time    as    hours,
minutes,    seconds,    frames,    and sub-frames.    The last two increments are arbitrary
values which vary,    depending on usage,    but even    this vague    specification    was   
sufficient to merit acceptance in    a    wide range    of applications,    especially video film.      It
has come    to    be known    as    SMPTE    code,    after    the Society for    Motion    Picture    and
Television Engineers.

SMPTE    code    is based on a fixed time-of-day    clock,    rather    than    a variable    rate,    so   
it is not the ideal code for resolving the    fine nuances    of musical timing.      Hardware   
synchronizers,    incorporating complex frequency multipliers and phase-locking schemes,
must be used to    correlate MIDI tempo timing and SMPTE absolute timing.      Some    of the   
first 'synch boxes' for SMPTE-MIDI conversion were    from    Roland (SBX-80) and from
Garfield Electronics.    It is difficult to calculate rates    and    match-up points for the two time
codes so both    of    these units    take    the    more    practical    approach    of    building    a   
map    of alignments as the time codes are received.    The map is then stored to tape or to
disk via MIDI.

An    important step in the development of SMPTE-to-MIDI standards    are the    map    formats
being proposed by SMPTE synchronizer    manufacturers such    as    Adams-Smith.      Adams-
Smith's new Zeta 3 system    will    allow commands from MIDI or RS-232 to control a tape
machine, or time codes from    the tape machine can be translated back to    MIDI    format.     
Two tape    transports    and    a variety of sequencers and computers    can    be operated   
from a single Zeta 3 synchronizer.      In    actual    operation, machines    are    synchronized by
'striping' one of the tape    tracks    on each machine with SMPTE code.    The tape controller
reads these tracks and fine-tunes motor speeds on the transports.    The Zeta 3 controller
also    outputs    MIDI timing bytes to keep sequencers in step with    the tape.

Other types of time codes which are in common use include    'FSK',    or frequency    shift
keying,    which encodes 0's and 1's as two    different frequencies.      A    major    drawback    to
FSK    is    the    lack    of    enough resolution    to provide any form of embedded absolute time 
reference. FSK tapes must always be started from a known reference point,    since FSK is a
RELATIVE timing reference.

Incorporation of SMPTE-control or provision for some kind of sync-to- tape can be a big
advantage when marketing software.      It may only be necessary    to stay compatible with
support hardware marketed by other companies.

Garvin: SUMMARY
By providing a bridge between the music and computer industries, MIDI has    sparked    new   
interest    in    the    design    of    innovative    musical instruments.      It    has,    in fact,    created
its    own    industry.      Many competent software engineers are becoming interested in music
because of this accessibility, and better products are being introduced every day.

Make    sure you look at a few of the commercially available sequencers or    patch    editors
before you start writing    software.      If    you    see something    conspicuously    absent on all
the sequencers you    encounter (such as a built-in universal patch editor),    chances are that
it    is difficult    to    design.      There    are some very    imaginative    designers working    with
MIDI and some 'impossible' things may    be    accomplished with    a new approach or just a
lot of work.      Visit one of the larger music stores to find out what is currently on the market.

Garvin: Bibliography

IMUG    (International MIDI Users Group):    PO Box 593,    Los    Altos,    CA    94022
 Membership: 8426 Vine Valley Dr., Sun Valley, CA 91352

SMPTE (Society of Motion Picture and Television Engineers):
 595 W.Hartsdale Ave., White Plains, NY 10607

PERIODICALS

Electronic Musician: 2608 Ninth St., Berkeley, CA 94710
    Subscription Dept.: 5615 Cermak Road, Cicero, IL 60650
Keyboards Computers and Software: 299 Main St., Northport, NY 11768
Keyboard Magazine - subscription dept.: Box 2110, Cupertino, CA 95015

MANUFACTURERS

Adams - Smith: 34 Tower Street, Hudson, MA 01749
AKAI Professional Div.: PO Box 2344 Fort Worth, TX 76113
Allen & Heath Brennel, Ltd.: 5 Connair Rd., Orange, CT 06477
Bacchus    Software    Systems:    2210 Wilshire    Blvd,    Suite    330,    Santa
    Monica,CA 90403
Brocktron-X: 5 East 22nd St., Suite #21M, New York, NY 10010
Casio, Inc.: 15 Gardner Rd., PO Box 1386, Fairfield, NJ
Digidesign Inc.: 100 S. Ellsworth, 9th Fl., San Mateo, CA 94401
Digital Keyboards,    Inc.    (Synergy): 105 Fifth Ave. Garden City Park,
            NY 11040
Doctor T's Music Software: 24 Lexington St. Watertown, MA 02172
E-mu Systems, Inc.: 1600 Green Hills Rd., Scotts Valley, CA 95066
Ensoniq Corp.: 263 Great Valley Parkway, Malvern, PA 19355
Fairlight Instruments: 1610 Butler Ave., West Los Angeles, CA 90025
Garfield Electronics: PO Box 1941, Burbank, CA 91507
Grey Matter Response: 15916 Haven Ave Tinley Park, IL 60477
Hybrid Arts,    Inc.:    11920 West Olympic Boulevard,    Los    Angeles,    CA 90064
Jim Miller (Personal Composer): PO Box 648, Honaunau, HI 96726
J    L Cooper Electronics:    1931 Pontius Avenue,    West Los Angeles,    CA 90025
Kawai America Corp.:    24200 S. Vermont Ave. PO Box 0438, Harbor City, CA 90710
Key Clique Inc.:    3960 Laurel Canyon Blvd,    suite 374,Studio    City, CA 91604
Korg USA, Inc.: 89 Frost St., Westbury, New York 11590
Kurzweil    Music Systems,    Inc.:    411 Waverly Oaks Road,    Waltham,    MA 02154-8464
Lexicon, Inc.: 60 Turner St., Waltham, Massachusetts 02154
Mark of the Unicorn: 222 Third Street, Cambridge, MA 02142
Mimetics: PO Box 60238 Station A, Palo Alto, CA 94306
Moog Music and Electronics: 2500 Walden Ave., Buffalo, NY 14225
New England Digital Corporation: White River Junction, Vermont 05001
Optical Media International: PO Box 2107, Aptos, CA 95001
Oberheim: 11650 W.Olympic Blvd., Los Angeles, CA 90064
Opcode Systems: 707 Urban Lane, Palo Alto, CA 94301
Passport Designs: 116 North Cabrillo Hwy., Half Moon Bay, CA 94019
Roland Corp US: 7200 Dominion Circle, Los Angeles, CA 90040-3647
Sequential Circuits, Inc.: 3051 North First St., San Jose, CA 95134
Southworth Music Systems, Inc.: Box 275, R.D. 1, Harvard, MA 10451

Syntech Corp: 5699 Kanan Road, Agoura, CA 91301
360 Systems: 18730 Oxnard St. Tarzana CA 91356
Voyetra Technologies: 426 Mt. Pleasant Ave, Mamaroneck, NY 10543
Yamaha International Corp.: PO box 6600, Buena Park, CA 90622

